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Abstract This paper addresses the problem of co-clustering
binary data in the latent block model framework with diag-
onal constraints for resulting data partitions. We consider
the Bernoulli generative mixture model and present three
new methods differing in the assumptions made about the
degree of homogeneity of diagonal blocks. The proposed
models are parsimonious and allow to take into account the
structure of a data matrix when reorganizing it into homo-
geneous diagonal blocks. We derive algorithms for each of
the presented models based on the classification expectation-
maximization algorithm which maximizes the complete data
likelihood. We show that our contribution can outperform
other state-of-the-art (co)-clustering methods on synthetic
sparse and non-sparse data. We also prove the efficiency of
our approach in the context of document clustering, by using
real-world benchmark data sets.

Keywords Co-clustering · Latent block model · Binary
data · Document clustering

1 Introduction

Co-clustering, also knownasbiclusteringor block-clustering,
involves simultaneous clustering of a set of observations and
a set of features in a data matrix. By creating permutations of
rows and columns, co-clustering algorithms aim to reorga-
nize the initial data matrix into homogeneous blocks. These
blocks, also called co-clusters, can therefore be seen as sub-
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sets of the data matrix characterized by a set of observations
and a set of features whose elements are similar (Govaert
1983; Vichi 2001; Madeira and Oliveira 2004; Van Meche-
len et al 2004; Bock 2003). Co-clustering algorithms offer
several advantages over simple clustering algorithms: for
instance, they reduce the initial matrix into a simpler form
with the same basic structure and require far less computa-
tion when compared with applying a clustering algorithm
separately on both modes of a data set. Applications of
co-clustering include but not limited to recommendation
systems (George 2005; Hofmann and Puzicha 1999), gene
expression analysis (Cheng and Church 2000) and text min-
ing (Dhillon 2001; Dhillon et al 2003). As a result, these
methods are of an increasing interest to the data mining
community. According to the recent survey on co-clustering
(Govaert and Nadif 2013), we can distinguish between met-
ric based and probabilistic based co-clustering methods. The
former ones consist in defining a clustering criterion and
then, in finding an algorithm optimizing this criterion (see
for instance; Govaert (1995), Cho et al (2004); Banerjee et al
(2007)). These methods are usually solved using heuristic
techniques because of their high optimization complexity.
Probabilistic approaches (Si and Jin 2003; Wyse and Friel
2012; Keribin et al 2015) use the framework of generative
mixture models. A particular case of them is the latent block
model (LBM) described in Govaert and Nadif (2003). The
LBM relies on the intuitive idea that a population is com-
posed of several blocks generated by different parametrized
probability density functions (pdf). This model became quite
popular for the following reasons: (1) imposing various con-
straints on the parameters that define the model allows to
handle a wide variety of different data structures; (2) they are
strongly linked to metric based methods while not suffering
from the same computational issues; (3) using an appropri-
ate probability distribution allows to deal with continuous as
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Fig. 1 a Original binary data, b data reorganized according to rows, and c data reorganized according to rows and columns

well as co-occurrence and binary data sets (see for instance;
Govaert and Nadif 2013).

One of the constraints that can be incorporated into a
co-clustering method is to seek a block diagonal structure,
i.e., the number of clusters of observations is equal to the
number of clusters of features. An illustration of this idea
is given in Fig. 1 where (a) represents an original binary
matrix, (b) represents the same matrix after a proper per-
mutation of rows whilst (c) adds a permutation of columns
resulting in a clear block diagonal structure. Imposing the
diagonal structure on the resulting co-clustering can be moti-
vatedbasedon twodifferent arguments. First, if one considers
that all row clusters are described by non-overlapping sub-
sets of features then these latter are forced to be orthogonal
among themselves. In this case, each row cluster would be
spanned by a set of vectors that are as different as possible
from any other subset of features in other clusters thus max-
imizing the inter-cluster distance. This idea is also linked to
the learning on Stiefel manifolds and, for instance, imposing
orthogonality constraints on both row and column partitions
in Bi-Orthogonal NMFmodel (Ding et al 2006). On the other
hand, diagonal structure is assumed to be sparsity induc-
ing as it penalizes ℓ0 norm of each row. While this may be
too restrictive on data sets with small number of features,
for high-dimensional data it presents clear benefits and can
be seen as a matrix regularization constraint. This idea is
also widely studied in generalized blockmodeling (Batagelj
et al 1998; Doreian et al 2005) and seriation methods (Gar-
cia and Proth 1986; Marcotorchino 1987) and has found its
application in, for example, group technology, botany and
social network analysis. When the data set is typically rep-
resented by a sparse high-dimensional document × term
matrix, these methods have proven again to be efficient when
dealingwith the problem of clustering or co-clustering. Their
objective is to group documents based on words within them
and to groupwords based on documents inwhich they appear.
As we will see in this paper, seeking a diagonal structure
on document × term matrices improves clustering results.
Among the co-clustering methods, the processing of binary
data is probably the less investigated one, although we can

cite, for instance, the work of Girolami (2001) and Kabán
and Bingham (2008). In this paper, we introduce a diago-
nal latent block model for co-clustering binary data. We use
a parsimonious Bernoulli distribution as a parametrized pdf
where the block parameter is split into a center and a disper-
sion parameters. The idea of this splitting scheme was first
introduced in Govaert and Nadif (2003). While this model
shows good results for highly dimensional data, wewill show
that it is less efficient for highly sparse data. In order to over-
come the issues of the original method and to ensure the
diagonal structure, we set the center parameter for diagonal
elements to 1 and consider three different scenarios for the
dispersion parameter. These scenarios explicitly cover the
following cases: (1) first model puts no constraints on the
degree of homogeneity of blocks; (2) second model assumes
that object blocks share the same degree of homogeneity; (3)
third model imposes the same degree of homogeneity for all
blocks. In the following sections, we introduce an extensive
comparison of the proposed models and show for what types
of data they are most suitable for. Furthermore, we show
that co-clustering algorithms in general give superior results
when compared to clusteringmethods when applied on high-
dimensional data. To this end, our results agree well with
a common belief that in a high-dimensional feature space
instances can be more accurately represented only based on
a small subset of relevant features. This idea also lies at the
foundation of such approaches as dimensionality reduction,
feature selection and sparse coding.

To this end, our work is related to the following papers:
Li (2005), Dhillon (2001)and Labiod and Nadif (2011).
Li (2005), the author proposed a block diagonal algorithm
applied to binary data. This algorithm alternates the clus-
tering of observations and features minimizing the error
between the original datamatrix and the reconstructedmatrix
based on the cluster structure. Dhillon (2001) a spectral algo-
rithm has been proposed; it consists in building a bipartite
graph from the document×termmatrixwhich is partitioned
to minimize the cut objective function. Another attempt to
use graph related criteria for block diagonal clustering was
presented in Labiod and Nadif (2011). The proposed spec-
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tral co-clustering algorithm maximizes a generalization of
the modularity that is further casted as a trace maximization
problem. However, all these methods are metric-based and,
thus, they suffer from the restrictions described above.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the needed background on the LBM and
defines the parsimonious Bernoulli model. In Sect. 3, we
present the diagonal latent block model for binary data and
derive three algorithms. Section 4 is devoted to numerical
experiments on synthetic data sets to assess and compare
algorithms on binary data.We compare our model with state-
of-the-art (co)-clustering algorithms on real document ×
term data sets showing the appropriateness of our contri-
bution in Sect. 5. Finally we summarize the study and give
possible research perspectives in the last section.

2 Preliminary knowledge

In this section,wefirst introduce notations that are used in this
paper, then we proceed by presenting the latent block model
and an expectation-maximization (EM) type algorithm used
to estimate its parameters.

2.1 Notations

The notations used in this paper are the following:

– Data is denoted by a n by d matrix x = {xi j , i ∈ I =
{1, . . . , n}; j ∈ J = {1, . . . , d}}.

– A partition of I into g clusters is represented by the clas-
sification matrix z = (zik, i = 1, . . . , n, k = 1, . . . , g)
where zik = 1 if element i belongs to cluster k and
zik = 0 otherwise. In a similar way we define the parti-
tion of J intom clusters byw = (w jℓ, j = 1, . . . , d, ℓ =
1, . . . ,m).

– Sums and products related to rows, columns, row’s clus-
ter and column’s cluster are subscripted by the letters i ,
j , k and ℓwithout indicating the limits of variation which
will be implicit. So, the sums

∑
i ,

∑
j ,

∑
k and

∑
ℓ stand

for
∑n

i=1,
∑d

j=1,
∑g

k=1, and
∑m

ℓ=1, respectively.

We also use intermediate forms of the original data matrix x.
These matrices are defined in Table 1.

Table 1 Reduced matrices, sizes and definitions of xz, xw and xzw

Matrix Size Definition

xz = (xzk j ) (g × d) xzk j =
∑

i zik xi j

xw = (xwiℓ) (n × m) xwiℓ = ∑
j w jℓxi j

xzw = (xzwkℓ ) (g × m) xzwkℓ = ∑
i, j zikw jℓxi j

2.2 Definition of the latent block model

To embed the co-clustering into a probabilistic framework,
in Govaert and Nadif (2003) the authors proposed the latent
block model, called LBM. Given a data matrix x ∈ Rn×d ,
the latent block model assumes that the univariate random
variables xi j are conditionally independent knowing z and
w with parametrised pdf f (xi j ;αkℓ) if the row i belongs to
the cluster k and the column j belongs to the cluster ℓ. The
conditional pdf of x knowing z and w can be expressed as

∏

i, j

f (xi j ;αziw j ) =
∏

i, j,k,ℓ

{ f (xi j ;αkℓ)}zikw jℓ . (1)

In this case, the two sets I and J are assumed to be random
samples so that the row and column labels become latent
variables. This model is based on the following assumptions:

– Conditional independence defined before;
– Independent latent variables: the partitions z1, . . . , zn ,
w1, . . . ,wd are considered as latent variables and assu-
med to be independent:

p(z,w) = p(z)p(w), (2)

p(z) =
∏

i

p(zi ) and p(w) =
∏

j

p(w j ), (3)

where p(z) and p(w) are the distributions of rows’ and
columns’ labels, respectively.

– For all i , the distribution of p(zi ) is the multinomial
distribution M(π1, . . . ,πg) and does not depend on i .
Similarly, for all j , the distribution of p(w j ) is the
multinomial distribution M(ρ1, . . . , ρm) and does not
depend on j .

The parameter of the latent block model is given by θ =
(π , ρ,α), where π = (π1, . . . ,πg) and ρ = (ρ1, . . . , ρm)

represent the mixing proportions and αkℓ is the parameter of
the distribution for the block (k, ℓ). Denoting by Z and W
the sets of possible labels z for I and w for J , the pdf of x
can be written

f (x; θ) =
∑

(z,w)∈Z×W
p(z,w) f (x|z,w; θ)

=
∑

(z,w)∈Z×W

∏

i

πzi

∏

j

ρw j

∏

i, j

f
(
xi j ;αziw j

)

=
∑

(z,w)∈Z×W

∏

i,k

π
zik
k

∏

jℓ

ρ
w jℓ
ℓ

×
∏

i, j,k,ℓ

{
f (xi j ;αkℓ)

}zikw jℓ . (4)
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Fig. 2 Latent block model as a graphical model

This model can be represented by a graphical model depicted
in Fig. 2. For the latent block model, the complete data are
defined by the vector (x, z,w) and its log-likelihood can be
written as follows

LC(z,w, θ) = L(θ; x, z,w)
= log{p(z; θ)p(w; θ) f (x|z,w;α)}
= log p(z; θ)+ log p(w; θ)+ log f (x|z,w;α)
= log

∏

i,k

π
zik
k + log

∏

j,ℓ

ρ
w jℓ
ℓ + log f (x|z,w;α).

Finally, the complete-data log-likelihood becomes

LC(z,w, θ) =
∑

i,k

zik logπk +
∑

j,ℓ

w jℓ log ρℓ

+
∑

i, j,k,ℓ

zikw jℓ log f (xi j ;αkℓ). (5)

Depending on the type of data, different probability distri-
butions were considered to deal with binary (Govaert and
Nadif 2007, 2008), contingency (Govaert and Nadif 2010)
and continuous (Govaert and Nadif 2013) data.

2.3 Parsimonious Bernoulli models

In order to deal with binary data, we assume that values of xi j
are distributed according to a Bernoulli distribution B(αkℓ)

(αkℓ ∈ R and 0 < αkℓ < 1) and the pdf is defined by

f (xi j ;αkℓ) = (αkℓ)
xi j (1 − αkℓ)

(1−xi j ).

From this formulation, a parsimonious model can be defined
by splitting the block parameterαkℓ into a “center” parameter
and a “dispersion” parameter and by imposing constraints on
the latter. More precisely, each parameter αkℓ is replaced by
akℓ ∈ {0, 1} and εkℓ ∈ [0, 1

2 ] with
{
akℓ = 1 and εkℓ = 1 − αkℓ if αkℓ ∈ [ 12 , 1],
akℓ = 0 and εkℓ = αkℓ if αkℓ ∈ [0, 1

2 [.

Thus, the Bernoulli pdf can be written as

f (xi j ; (akℓ, εkℓ)) = (εkℓ)
|xi j−akℓ|(1 − εkℓ)

1−|xi j−akℓ|,

where

– akℓ ∈ {0, 1} is the most frequent binary value of the
block, representing the center of the block and

– εkℓ ∈ [0, 1/2] is the probability of any particular vari-
able having a value different from that of the center of
the block representing the dispersion, or degree of het-
erogeneity, of the block. Therefore, a high value of this
parameter means a high degree of heterogeneity for a
given block.

From this formulation of the pdf, we can impose several
constraints on the parameters akℓ and εkℓ and therefore define
parsimonious models.

2.4 Classification maximum likelihood approach

Considering the Classification Maximum Likelihood (CML)
approach (Symons 1981), the optimization of the complete-
data log-likelihood defined inEq. (5) can be achieved through
an approximation of theLatent Block EMalgorithm (Govaert
and Nadif 2005) referred as the Latent Block Classification
EM (LBCEM) (Govaert and Nadif 2008). In the sequel, we
focus on LBCEM that relies on the complete data (x, z,w).
It maximizes the complete data log-likelihood by alternating
two conditional optimizations of LC(z, θ |w) for the partition
of instances and LC(w, θ |z) for the partition of columns.
These maximizations rely on the following three principal
steps:

1. Maximization of LC(z,w, θ)w.r.t. z for fixed θ andw.
2. Maximization of LC(z,w, θ)w.r.t.w for fixed θ and z.
3. Maximization of LC(z,w, θ)w.r.t. θ for fixed z andw.

The first two steps correspond to the Estimation and Clas-
sification Steps of the CEM algorithm (Celeux and Govaert
1992). They allow us to construct a pair of partition (z,w)
before the Maximization Step. In Algorithm 1 we describe
the different steps of LBCEM.

3 Diagonal Bernoulli LBM

In this section, we propose to derive a diagonal version of
the latent block model based on a parsimonious Bernoulli
distribution. The Diagonal Bernoulli Latent Block Model
(DBLBM) aims at dealing with data that is assumed to have
a strong latent diagonal structure composed of homogeneous
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Algorithm 1 LBCEM
input: x, g, m
initialization: z, w
Compute: π̂k =

∑
i zik
n , ρ̂ℓ =

∑
j w jℓ

d , and

α̂kℓ = argmaxk,ℓ
∑

i, j

zikw jℓ log f (xi j ,αkℓ)
repeat
repeat
step 1. zi = argmaxk(

∑
j,ℓ w jℓ log f (xi j ,αkℓ)+ logπk)

step 2. Compute π̂k =
∑

i zik
n , and

α̂kℓ = argmaxk,ℓ
∑

i, j

zikw jℓ log f (xi j ,αkℓ)
until convergence
repeat
step 3. w j = argmaxℓ(

∑
i,k zik log f (xi j ,αkℓ + log ρℓ)

step 4. Compute ρ̂ℓ =
∑

j w jℓ

d and

α̂kℓ = argmaxk,ℓ
∑

i, j

zikw jℓ log f (xi j ,αkℓ)
until convergence

until convergence
return z, w, αkℓ, πk and ρℓ

blocks. This type of data occurs in many real-world applica-
tions like document × term partitioning, network analysis
or any other application that implies a symmetry between the
set of objects and the set of features.

3.1 Definition of the model

The Diagonal Bernoulli LBM aims to reorganize the initial
datamatrix in away that the resulting partitions are composed
of diagonal blocks of 1’s. To achieve this, we set akk = 1
∀k = 1, . . . , g and akℓ = 0 ∀ℓ ̸= k. Thus, the Bernoulli pdf
takes the two following forms

f (xi j ; εkk |akk = 1) = (εkk)
|xi j−1|(1 − εkk)

1−|xi j−1|,

and

f (xi j ; εkℓ|akℓ = 0) = (εkℓ)
xi j (1 − εkℓ)

1−xi j .

Therefore, θ = (π , ρ,α) denotes the parameters of the
model with π = (π1, . . . ,πg), ρ = (ρ1, . . . , ρg) and
ϵ = (ε11, . . . , εkℓ). In this case, we have εkℓ ∈ [0, 1

2 ]
that denotes the degree of heterogeneity of the block (k, ℓ).
The probability density associated with this parsimonious
Bernoulli distribution is given by:

∑

(z,w)∈Z×W

∏

i,k

π
zik
k

∏

j,ℓ

ρ
w jℓ
ℓ

∏

i, j,k

(
f (xi j ; εkk |akk = 1)

)zikw jk

×
∏

i, j,k,ℓ ̸=k

(
f (xi j ; εkℓ|akℓ = 0)

)zikw jℓ .

We note that unlike the Bernoulli LBM presented in the
previous section, we do not have to estimate the akℓ parame-
ters but we set them beforehand to a predefined value.

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

ε1 ε1 ε1

ε2 ε2 ε2

ε3 ε3 ε3

1 0 0

0 1 0

0 0 1

akℓ

ε ε ε

ε ε ε

ε ε ε

Fig. 3 Values of the akℓ and εkℓ depending on hypothesis on the degree
of homogeneity for the three models where g = 3

In what follows, we propose three new diagonal parsimo-
nious models by imposing certain constraints on εkℓ. The
first model assumes for each block (k, ℓ) a different degree
of homogeneity. For the secondmodel the assumption used is
that the diagonal blocks have different degree of homogene-
ity w.r.t. rows. Finally, the third model hypothesizes that all
blocks share the same global degree of dispersion and that
the row’s and column’s clusters sizes are equal. A summary
of parametrization schemes of these three models is given in
Fig. 3 for a matrix with 3 blocks. In the sequel, models are
referred to as model M1, model M2 and model M3.

3.2 Model M1

Whenwe consider different degrees of homogeneity for each
block, the complete-data log-likelihood takes the following
form:

LC(z,w, θ) =
∑

i,k

zik logπk +
∑

j,ℓ

w jℓ log ρℓ

+
∑

i, j,k

zikw jk log f (xi j ; (akk = 1, εkk))

+
∑

i, j,k,ℓ ̸=k

zikw jℓ log f (xi j ; (akℓ = 0, εkℓ)).

As we consider the Bernoulli distribution, we obtain:

LC(z,w, θ) =
∑

k

z.k logπk +
∑

ℓ

w.ℓ log ρℓ

+
∑

i, j,k

zikw jk

(
|xi j − 1| log εkk

(1 − εkk)
+ log(1 − εkk)

)

+
∑

i, j,k,ℓ ̸=k

zikw jℓ

(
xi j log

εkℓ

1 − εkℓ
+ log(1 − εkℓ)

)
,

(6)

where z.k =
∑

i zik and w.ℓ =
∑

j w jℓ.
Similar to LBCEM (see Algorithm 1), we optimize this

criterion by alternating the maximization of two complete
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log-likelihoods: LC(z, θ |w) and LC(w, θ |z). The maximiza-
tion procedures consist of the following three steps. 1.
Maximization of LC(z,w, θ) w.r.t. z for fixed θ and w. As
LC(z,w, θ) can be written as

∑
i,k zik Aik+

∑
ℓ w.ℓρℓ where

Aik = logπk + log
εkk

(1 − εkk)
|xwik − w.k | + w.k log (1 − εkk)

+
∑

ℓ ̸=k

xwiℓ log
εkℓ

(1 − εkℓ)
+ w.ℓ log (1 − εkℓ), (7)

we deduce zi = argmaxk Aik . 2. Maximization of
LC(z,w, θ)w.r.t.w for fixed θ and z. In the same manner, as
LC(z,w, θ) can bewritten as

∑
jℓ w jℓBjℓ+

∑
k z.kπk where

Bjℓ = log ρℓ +
∑

k ̸=ℓ

|xzk j − z.k | log
εkk

(1 − εkk)

+ z.k log (1 − εkk)+
∑

k ̸=ℓ

xzk j log
εkℓ

(1 − εkℓ)

+ z.k log (1 − εkℓ), (8)

we deduce w j = argmaxℓ Bjℓ.
3. Maximization of LC(z,w, θ) w.r.t. θ for fixed z and w:
LC(z,w, θ) takes the following form

∑

k

|xzwkk − z.kw.k | log
εkk

(1 − εkk)
+ z.kw.k log(1 − εkk)

+
∑

k,ℓ ̸=k

xzwkℓ log
εkℓ

(1 − εkℓ)
+ z.kw.ℓ log(1 − εkℓ)

+
∑

k

z.k logπk +
∑

ℓ

w.ℓ log ρℓ,

where xzwkk = ∑
i, j zikw jk xi j and xzwkℓ = ∑

i, j zikw jℓxi j .
The optimization of LC(z,w, θ) is subject to the following
constraints:

∑

k

πk = 1,πk ∈ [0, 1] and
∑

ℓ

ρℓ = 1, ρℓ ∈ [0, 1]. (9)

Therefore, to maximize this criterion with respect to the
necessary conditions for optimality we use the method of
Lagrange multiplier and obtain:

LC = LC(z,w, θ) − λ1

(
∑

k

πk − 1

)

− λ2

(
∑

ℓ

ρℓ − 1

)

,

(10)

where λ1 and λ2 are the Lagrange multipliers. Then, by set-
ting the derivatives ofLC with respect to each parameter and
the Lagrange multipliers to zero, we obtain ∀k, ℓ:

ε̂kk =
|xzwkk − z.kw.k |

z.kw.k
and ε̂kℓ =

xzwkℓ
z.kw.ℓ

π̂k =
z.k
n

ρ̂ℓ =
w.ℓ

d
(11)

From an algorithmic point of view, we choose to use the
same strategy as for LBCEM. The key idea behind this
approach is to fix the partition of columns while optimiz-
ing LC(z, θ |w) on one hand (corresponds to steps 1 and 3
described above) and then, to fix the partition of rows while
optimizing LC(w, θ |z) on the other hand (corresponds to
steps 2 and 3). As a result, we work on intermediate matri-
ces of reduced size when compared with the initial one and
therefore, this approach can handle data sets of higher dimen-
sion and also, converge faster. This strategy is summarized
in Algorithm 2 which is referred to as [M1] in the sequel.

Algorithm 2 [M1]
input: x, g
initialization: z, w,
compute: π̂k = z.k

n , ρ̂ℓ = w.ℓ
d , ε̂kk and ε̂kℓ given in (11)

repeat
xwiℓ = ∑

j w jℓxi j
repeat
step 1. zi = argmaxk Aik given in eq (7)
step 2. Compute π̂k = z.k

n , ε̂kk and ε̂kℓ given in (11)
until convergence
xzk j =

∑
i zik xi j

repeat
step 3. w j = argmaxℓ Bjℓ given in eq (8)
step 4. Compute ρ̂ℓ = w.ℓ

d , ε̂kk and ε̂kℓ given in (11)
until convergence

until convergence
return z, w, εkℓ, πk and ρℓ

3.3 Model M2

In this model, we impose that the εkℓ’s of the kth cluster
are equal for ℓ = 1, . . . ,m. In this case, the complete data
log-likelihood LC(z,w, θ) or LC is given by

LC =
∑

k

z.k logπk +
∑

ℓ

w.ℓ log ρℓ

+
∑

i, j,k

zikw jk

(
|xi j − 1| log εk

(1 − εk)
+ log (1 − εk)

)

+
∑

i, j,k,ℓ ̸=k

zikw jℓ

(
xi j log

εk

(1 − εk)
+ log (1 − εk)

)
.

Therefore, the three steps previously developed for [M1]
become:
1. Maximization of LC(z,w, θ) w.r.t. z for fixed θ and w. As
LC(z,w, θ) can be written as

∑
i,k zik Aik+

∑
ℓ w.ℓρℓ where
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Aik = logπk + |xwik − w.k | log
εk

(1 − εk)
+ w.k log (1 − εk)

+
∑

ℓ ̸=k

xwiℓ log
εk

(1 − εk)
+ w.ℓ log (1 − εk)

= logπk + log
εk

(1 − εk)

⎛

⎝|xwik − w.k | +
∑

ℓ ̸=k

xwiℓ

⎞

⎠

+ d log(1 − εk), (12)

where xwik =
∑

j w jk xi j . This leads to zi = argmaxk Aik .
2. Maximization of LC(z,w, θ) w.r.t. w for fixed θ and z.
As LC(z,w, θ) can be written as

∑
j,ℓ w jℓBjℓ +

∑
k z.kπk

where

Bjℓ = log ρℓ +
∑

k ̸=ℓ

|xzk j − z.k | log
εk

(1 − εk)
+ z.k log (1 − εk)

+
∑

k ̸=ℓ

xzk j log
εk

(1 − εk)
+ z.k log (1 − εk). (13)

This leads to w j = argmaxℓ Bjℓ.
3. Maximization of LC(z,w, θ) w.r.t. θ for fixed z and w:
LC(z,w, θ) takes he following form

∑

k

|xzwkk − z.kw.k | log
εk

(1 − εk)
+ z.kw.k log(1 − εk)

+
∑

k,ℓ ̸=k

xzwkℓ log
εk

(1 − εk)
+ z.kw.ℓ log(1 − εk)

+
∑

k

z.k logπk +
∑

ℓ

w.ℓ log ρℓ

and we obtain π̂k = z.k
n , ρ̂ℓ = w.ℓ

d and

ε̂k =
|xzwkk − z.kw.k | +

∑
ℓ ̸=k x

w
iℓ

z.k × d
. (14)

Concerning the optimization process, we use the same strat-
egy as for the model εkℓ and obtain the Algorithm 3 which
is referred to as [M2] in the following sections.

3.4 Model M3

This last model is the simplest one. We consider that all the
εkℓ are equal for ℓ = 1, . . . ,m and k = 1, . . . , g. The com-
plete data log likelihood becomes

LC(z,w, θ) =
∑

k

z.k logπk +
∑

ℓ

w.ℓ log ρℓ

+ log
ε

(1 − ε)

∑

i,k, j

zikw jk |xi j − 1|

+ log (1 − ε)
∑

k

w.k z.k

Algorithm 3 [M2]
input: x, g
initialization: z, w,
compute: π̂k = z.k

n , ρ̂ℓ = w.ℓ
d and ε̂k =

|xzwkk −z.kw.k |+
∑

ℓ̸=k x
w
iℓ

z.k×d
repeat
xwiℓ = ∑

j w jℓxi j
repeat
step 1. zi = argmaxk Aik given in eq (12)
step 2. Compute π̂k = z.k

n and ε̂k given in eq (14).
until convergence
xzk j =

∑
i zik xi j

repeat
step 3. w j = argmaxℓ Bjℓ given in eq (13)
step 4. Compute ρ̂ℓ = w.ℓ

d and ε̂k given in eq (14).
until convergence

until convergence
return z, w, εk , πk and ρℓ

+ log
ε

(1 − ε)

∑

i, j,k,ℓ ̸=k

zikw jℓxi j

+ log (1 − ε)
∑

k,ℓ ̸=k

z.kw.ℓ.

which is equivalent to

LC(z,w, θ) =
∑

k

z.k logπk +
∑

ℓ

w.ℓ log ρl

+ log
ε

(1 − ε)

∑

i,k, j

zikw jk |xi j − 1|

+ log
ε

(1 − ε)

∑

i, j,k,ℓ ̸=k

zikw jℓxi j

+ (n × d) log (1 − ε).

As for [M1] and [M2], the algorithm resulting from this
model is based on the three steps defined as follows:
1. Aik becomes

Aik = |xwik − w.k | +
∑

ℓ ̸=k

xwiℓ + logπk, (15)

and zi = argmink Aik .
2. Bjℓ becomes

Bjℓ =
∑

k ̸=ℓ

|xzk j − z.k | +
∑

k ̸=ℓ

xzk j + log ρℓ, (16)

and w j = argminℓ Bjℓ.
3. And LC(z,w, θ) can be written as

log
ε

(1 − ε)

⎡

⎣
∑

k

|xzwkk − z.kw.k | +
∑

k,ℓ ̸=k

xzwkℓ

⎤

⎦

+ nd log (1 − ε)+
∑

k

z.k logπk +
∑

ℓ

w.ℓ log ρℓ,

so we obtain π̂k = z.k
n , ρ̂ℓ = w.ℓ

d ∀k, ℓ.
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We notice that ε is not involved in the optimization but
it can be estimated from optimal partitions (z∗,w∗) by ε̂ =∑

k |xzwkk −z.kw.k |+
∑

k,ℓ ̸=k x
zw
kℓ

n×d and (1 − ε̂) represents the global
degree of homogeneity.

Once again, we choose to work on intermediates matrices
like for the two previous models. Finally, the corresponding
algorithm is presented in Algorithm 4 and is referred to as
[M3].

Algorithm 4 [M3]
input: x, g
initialization: z, w
compute: π̂k = z.k

n , ρ̂ℓ = w.ℓ
d

repeat
xwiℓ = ∑

j w jℓxi j
repeat
step 1. zi = argmaxk Aik given in eq (15)
step 2. Compute π̂k = z.k

n
until convergence
xzk j =

∑
i zik xi j

repeat
step 3. w j = argmaxℓ Bjℓ given in eq (16)
step 4. Compute ρ̂ℓ = w.ℓ

d
until convergence

until convergence
return z, w, ε, πk , ρℓ

Finally, if we also assume equal proportions of the cluster
in rows and columns which is πk = 1

g∀k and ρℓ = 1
g∀ℓ, the

proposed criterion can be expressed as:

log
ε

(1 − ε)
W (z,w)+ D,

where

W (z,w) =
∑

i, j,k

zikw jk |xi j − 1| +
∑

i, j,k,ℓ ̸=k

zikw jℓxi j (17)

and D = (n × d) log (1 − ε). Since log ε
(1−ε) ≤ 0 and D

does not depend on (z,w), maximizing LC(z,w, θ) is equiv-
alent to minimizing W (z,w). The final criterion has a very
clear interpretation. On one hand, it minimizes the num-
ber of values different from 1 on the diagonal, and on the
other hand it minimizes the number of 1’s outside the diag-
onal. What’s more, it is directly related to the criterion of
CROBIN (Govaert 1983) algorithm and, more precisely, the
constrainedversionproposed inGarcia andProth (1986) used
in a group technology application. It is also strongly related
with the techniques of block seriation (Marcotorchino 1987).
The algorithm resulting from this last model consists of two
simple following steps:

1. Aik = |xwik − w.k | +
∑

ℓ ̸=k x
w
iℓ, and zi = argmink Aik ;

(a) Original data (b) Ordered data

Fig. 4 Visualisation ofVote data set: original data and data reorganized
according to the partitions of rows and columns. Black cell for “yea”,
white for “nay”

2. Bjℓ = ∑
k ̸=ℓ |xzk j − z.k | + ∑

k ̸=ℓ x
z
k j and w j =

argmink B jk .

To summarize, we defined three parsimonious models and
derived three algorithms [M1], [M3] and [M3] that are eval-
uated in Sects. 4 and 5 on both dense and sparse binary data
sets.

3.5 Illustration on U.S. congressional voting data

In order to give a comprehensive illustration of how the pro-
posed models work, we apply them to the United States
Congressional Voting Records data.1 This data set contains
votes of each of the 435 members of the U.S. House of Rep-
resentatives on 16 political issues. Each element is coded by
1 for “yea”, 0 for “nay”. Missing values (5.4%) represent an
absence or an abstention. For convenience, we convert miss-
ing values into “nay”, i.e., 0 as in Lee and Huang (2014),
Wyse and Friel (2012).

We apply the original LBM for Bernoulli data (referred
as LBCEM) and all proposed algorithms by setting g = 2
because members are separated into two groups: the Repub-
licans (168) and the Democrats (267). Also, in our models,
the data are supposed to have a strong diagonal structure that
leads to setting m = g. Figure 4 shows the original data set
and the same data set where rows and columns are reorga-
nized according to partitions obtained with [M3] resulting
in a clear diagonal structure. Given that the obtained par-
titions with the two other models are quite similar to the
one presented in Fig. 4, we choose not to show them. From
this figure, we can observe a structure with clear high density
regions on the diagonal when the initial matrix is reorganized
with respect to the obtained cluster assignments. Figure 5 is
the criterion optimized by each algorithm as a function of
the number of iterations. We can see that all three algorithms

1 https://archive.ics.uci.edu/ml/datasets.html.
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Fig. 5 Criterion of each algorithm obtained when starting with 10 random initializations: a [M1], b [M2] and c [M3] as functions of the number
of iterations. As regards [M3], we represent the criterion W that requires to be minimized

Table 2 Vote data set:
confusion matrices obtained
with the four algorithms

True label Cluster

R. D.

LBCEM

R. 154 14

D. 42 225

[M1]

R. 154 14

D. 43 224

[M2]

R. 147 21

D. 33 234

[M3]

R. 154 14

D. 42 225

converge. Indeed, [M1] and [M2] maximize LC (see Eq. 6
and 12) and both converge in less than 6 iterations. In its
turn, [M3] minimizes W defined in Eq. 17 and converges in
4 iterations at most.

Concerning the column clusters, we obtain the exact
same partition with all three models. Block (1,1) associates
8 issues: handicapped-infants, adoption-budget-resolution,
anti-satellite-test-ban, aid-to-nicaraguan-contras, mx-
missile, syn fuels-corporation-cutback, duty-free-export,
export-administration-act-south-africa where most of the
Democrats voted “yea” for these propositions, while the
majority of Republicans voted ‘nay” (block (2,1)). Inversely,
the block (2,2) associates the following issues: water-project-
cost-sharing, religious-groups-in-schools, el-salvador-aid,
education-spending, crime, superfund-right-to-sue, physic-
ian-fee-freeze, immigrationwith themajority of Republicans
who voted “yea” (block (2,2)) while the Democrats voted
‘nay” for these propositions (block (1,2)). For each model,

Table 3 Value of ϵ’s obtained with [M1] (on the left), [M2] (on the
right) and [M3] (bottom line)

ε = (εkℓ) =
(
0.2838 0.2035
0.2273 0.1697

)
ε = (εk) =

(
0.1795 0.2694

)

ε = (ε) =
(
0.2276

)

we report the confusion matrix (Table 2) resulting from the
partition of rows.

Finally, we report the estimators of εkℓ, εk and ε reached
with [M1], [M2] and [M3], respectively in Table 3. From
this table, we can see that two models agree on the fact
that two parties votes are distributed with a different level
of heterogeneity: the values 0.2838 and 0.1697 in ε matrix
stand for Democrats’ and Republicans’ “yea” votes for their
respective issues in M1 model; the same behaviour can be
observed in vector ε forM2 model, where the obtained val-
ues 0.2694 and 0.1795 summarize the heterogeneity of votes
for Democrats and Republicans for both “yea” and “nay”.
The values obtained by both models indicate that in general
Democrats vote in a more diverse way as their degree of het-
erogeneity is higher. Lastly, the ε value obtained with [M3]
shows in some way the average of the heterogeneity levels
of both parties.

To conclude, we show that on the Vote data set, all pro-
posedmodels are able to find a coherent partitionwith respect
to the observed labels and perform equally well compared to
the original LBCEM. From the values presented in Table 3,
we also observe that each of the proposed models reveals
different information about the data set: (1) M1 shows a
detailed heterogeneity of votes within two parties for both
blocks of propositions; (2) M2 presents the average het-
erogeneity of votes withing each party without specifying
the corresponding issues; (3)M3 presents the mean hetero-
geneity of votes for both parties. This important property of
the introduced methods gives us a hint on how their results
should be interpreted. Next, we propose to compare these
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Fig. 6 Visualisation of a simulated data set of size 1000× 1000 with co-clusters of equal proportion a well separated, bmoderately separated and
c ill-separated

Table 4 Value of the parameters used for the simulations

Data Size Sparsity α Size Sparsity α

+ 1000 × 500 [50.1; 51.2] α =

⎛

⎝
0.57 0.43 0.47
0.43 0.58 0.45
0.44 0.46 0.58

⎞

⎠ 1000 × 1000 [50.4; 50.6] α =

⎛

⎝
0.57 0.46 0.47
0.46 0.55 0.46
0.47 0.46 0.56

⎞

⎠

++ – [50.3; 50.8] α =

⎛

⎝
0.57 0.46 0.47
0.46 0.55 0.46
0.47 0.46 0.55

⎞

⎠ – [50.8; 51.1] α =

⎛

⎝
0.54 0.46 0.47
0.46 0.54 0.46
0.47 0.48 0.53

⎞

⎠

+++ – [50.2; 50.9] α =

⎛

⎝
0.54 0.48 0.47
0.48 0.54 0.45
0.47 0.46 0.54

⎞

⎠ – [50.3; 50.5] α =

⎛

⎝
0.53 0.48 0.475
0.48 0.54 0.47
0.47 0.48 0.53

⎞

⎠

models on synthetic binary data sets with various character-
istics in order to highlight the advantages and drawbacks of
each one.

4 Synthetic data sets

In this section, we evaluate the three models on simulated
binary data sets using three different criteria for 12 configu-
rationof data dependingon the size, the degree of overlapping
and the co-cluster proportions. We also show what model is
the most suitable for dense and for highly sparse data sets
by performing extensive empirical experiments. We focus
on the results in terms of rows clustering. All experiments
are conducted on the same machine (OS: windows 7 Pro.
64-bits, Memory: 16 GiB, Processor: Intel®Core™i7-3770
CPU @ 3.40GHz).

4.1 Experimental scheme

In order to study the three models described in Sect. 5, we
simulate binary data sets using the latent block model pro-
posed in Govaert and Nadif (2003). In our experiments we
selected 12 types of data arising from 3 × 3 component
Bernoulli mixture models corresponding to two data dimen-
sions (n × d = 1000 × 500 and n × d = 1000 × 1000)

and three cases of separation (well separated [+], moder-
ately separated [++] and ill-separated [+++]) (see Fig. 6).
The degree of separation can be measured by the true error
rate, that is defined as the expectation of misclassification
probability E(δ(z, d(x))), where z and x are random vari-
ables associated to the model, d is the optimal Bayes rule,
d(x) = argmaxx P(z|x), associated to thismodel and δ is the
error rate defined previously. Since δ is difficult to compute
theoretically, we used Monte Carlo simulations and approx-
imated the error rate by comparing the partition obtained by
initializing the algorithm with the true classes and stopped
after the first iteration. In our experiments the parameters
were selected so as to obtain true error rates in [0.01, 0.05]
for thewell-separated [+], in [0.09, 0.15] for themoderately-
separated [++] and in [0.19, 0.25] for the ill-separated [++
+] classes. Values of α used for all simulations are reported
in Table 4. Finally, we consider both equal and unequal pro-
portions (π = ρ = (0.2, 0.3, 0.5)) of co-clusters.

For each data structure, we generate 100 samples. For
each sample, we run the algorithms 200 times starting from
random initialisations and retain the best result according to
the corresponding criterion.

4.2 Performance evaluation

In order to assess and to compare the performance of the pro-
posed algorithms we use three commonly adopted metrics
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including accuracy, Normalize Mutual Information (Strehl
and Ghosh 2003) and Adjusted Rand Index (Hubert and Ara-
bie 1985). Clustering accuracy (noted Acc) is one of themost
widely used evaluation criteria and is defined as:

Acc = 1
n
max

⎡

⎣
∑

Ck ,Lℓ

T (Ck,Lℓ)

⎤

⎦ ,

where Ck is the kth cluster in the final results, and Lℓ is the
true ℓth class. T (Ck,Lℓ) is the proportion of objects that
were correctly recovered by the clustering algorithm, i.e.,
T (Ck,Lℓ) = Ck ∩ Lℓ. Accuracy computes the maximum
sum of T (Ck,Lℓ) for all pairs of clusters and classes.

The secondmeasure used is the NormalizedMutual Infor-
mation (NMI). It is calculated as follows:

NMI =
∑

k,ℓ
nkℓ
n log nkℓ

nk n̂ℓ√(∑
k
nk
n log nk

n

) (∑
ℓ
n̂k
n log n̂ℓ

n

) ,

where nk denotes the number of data contained in the cluster
Ck(1 ≤ k ≤ K ), n̂ℓ is the number of data belonging to the
class Lℓ (1 ≤ ℓ ≤ K ), and nkℓ denotes the number of data
that are in the intersection between the cluster Ck and the
class Lℓ.

The last evaluation criterion Adjusted Rand Index (noted
ARI) measures the similarity between two clustering parti-
tions. From a mathematical standpoint, the Rand index is
related to the accuracy. The adjusted form of the Rand Index
is defined as:

ARI =
∑

k,ℓ
(nkℓ
2

)
−

[∑
k
(nk
2

) ∑
ℓ

(n̂ℓ
2

)] /(n
2

)

1
2

[∑
k
(nk
2

)
+ ∑

ℓ

(n̂ℓ
2

)]
−

[∑
k
(nk
2

) ∑
ℓ

(n̂ℓ
2

)]/(n
2

) .

The values of Acc and NMI are between 0 and 1 and the
ARI ranges from −1 to 1. For both metrics, a value equal
to 1 indicates a perfect agreement between the true and the
estimated partition. In the sequel, we express these metrics
in percentage.

Finally, in clustering, the proportion of misclassified
instances can be directly defined as e(z, ẑ) = 1 − Acc.
This definition can be extended to the comparison of co-
clusterings results as follows. Denoted by CCE, the co-
clustering error (Patrikainen and Meila 2006; Govaert and
Nadif 2008), which takes into account the relationship
between the partition of instances and the partition of vari-
ables we have:

CCE((z,w), (ẑ, ŵ)) = e(z, ẑ)+ e(w, ŵ) − e(z, ẑ)

× e(w, ŵ),

where ẑ and ŵ are the partitions of instances and variables
estimated by the algorithm while z and w are the true par-
titions. However, since the true labels of variables are not
available for benchmark data sets we only used this criteria
on synthetic data sets.

4.3 Results

Table 5 presents the mean and the standard deviation of
the accuracy, the NMI and the ARI for each data struc-
ture. The degree of sparsity (i.e., the proportion of 0’s in the
matrix) of these data sets is between 50 and 52%. We com-
pare all three proposed algorithms and the original LBCEM
for binary data. We also use the parametric Student’s t-test
to check for significant difference of performance between
tested methods. A p value smaller than 0.05 suggests that
the null hypothesis is false, i.e., there are statistically sig-
nificant differences of performance between the compared
algorithms. We compare algorithms in pairs and a boldface
type indicates that the algorithm significantly outperforms all
others. Several comments can bemade based on these results.

– All three algorithms give comparable results in terms of
performance on the well separated (+) and moderately
separated (++) data. The classic LBCEM also performs
equally well.

– On (+++) data sets with both equal and unequal propor-
tions of the clusters, we note that [M2] is more effective
than [M1] for row clustering, and the difference with
[M3] is all the more important; as [M3] assumes an equal
degree of heterogeneity, it is not able to propose a good
partition when the structure of data sets is more complex.
However, when considering row and column clustering
performances measured by CCE criterion, we observe
that [M1] surpasses [M2] in all situations. This can be
easily explained by the fact that the hypothesis behind
[M2] allows it to distinguish only the degree of hetero-
geneity between rows contrary to [M1]. In its turn, [M1]
is allowed to assign levels of heterogeneity to blocks that
makes it more flexible in terms of overall co-clustering
performance. To summarize, for [M1] correctly reveal-
ing the true co-clustering partition of data takes priority
over accurate clustering of rows only, while [M2] is par-
ticularly aimed at finding homogeneous row clusters and
the expression of Aik (12) highlights this fact.

Regarding the computational cost, Table 6 reports means
and standard deviations of the time required by our algo-
rithms in order to converge:

– One can note that [M3] requires less time to converge
than [M1] and [M2]. The difference becomes even more
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Table 5 Means of Acc, NMI and ARI (±standard deviations) computed on 200 simulated samples for equal and unequal proportions of the
co-clusters

Proportion Size Degree of
overlap

Performance Algorithms

LBCEM [M1] [M2] [M3]

Equal prop. (1000, 500) + Acc 98.04± 0.45 98.07± 0.40 97.86± 0.50 97.79± 0.48
NMI 90.13± 1.79 90.60± 1.56 90.10± 1.92 89.84± 1.83
ARI 94.22± 1.30 94.30± 1.15 93.70± 1.45 93.50± 1.40
CCE 1.76± 0.29 1.47± 0.14 2.39± 0.50 2.34± 0.48

– ++ Acc 90.12± 1.09 90.91± 1.07 91.49± 0.95 91.22± 1.06
NMI 66.75± 2.85 67.17± 2.94 68.83± 2.48 68.05± 2.85
ARI 74.12± 2.75 74.69± 2.78 76.19± 2.43 75.48± 2.73
CCE 13.33± 1.18 11.46± 0.79 12.08± 1.42 12.58± 2.01

– +++ Acc 77.06± 10.90 77.13± 8.11 77.98± 7.38 73.76± 7.74
NMI 43.28± 9.94 43.51± 8.70 41.71± 11.43 36.52± 10.39
ARI 46.77± 14.20 47.39± 11.58 46.79± 13.20 41.34± 11.65
CCE 29.31± 12.56 24.12± 7.96 26.61± 8.12 26.48± 8.36

Unequal prop. (1000, 500) + Acc 97.29± 0.39 98.37± 0.33 97.64± 0.48 97.42± 0.54
NMI 90.08± 1.79 91.48± 1.56 89.05± 1.95 87.86± 2.23
ARI 94.18± 1.13 95.42± 0.90 93.30± 1.37 92.62± 1.50
CCE 1.72± 0.44 1.11± 0.15 2.58± 0.59 2.87± 0.60

– ++ Acc 89.09± 1.33 89.72± 1.92 91.08± 1.03 86.56± 3.35
NMI 62.55± 3.18 62.88± 3.92 66.13± 2.72 56.49± 6.61
ARI 73.31± 2.96 73.73± 3.53 76.41± 2.41 66.09± 6.90
CCE 15.40± 5.89 11.64± 0.74 13.57± 1.72 16.52± 4.09

– +++ Acc 78.57± 4.18 80.21± 4.18 83.67± 1.89 76.48± 3.83
NMI 49.77± 2.56 50.13± 2.92 51.54± 3.07 40.69± 5.67
ARI 59.31± 4.11 60.89± 4.46 64.38± 2.73 52.49± 6.24
CCE 31.02± 11.78 26.54± 8.25 28.31± 9.91 27.35± 9.64

Equal prop. (1000, 1000) + Acc 96.05± 0.45 96.07± 0.58 96.56± 0.51 96.28± 0.57
NMI 82.60± 1.74 82.95± 2.06 84.70± 1.87 83.91± 2.06
ARI 88.07± 1.24 88.58± 1.60 89.95± 1.42 89.14± 1.57
CCE 2.37± 0.42 1.93± 0.24 2.84± 0.51 2.83± 0.55

– ++ Acc 91.74± 1.23 91.98± 1.35 93.02± 1.13 92.97± 1.00
NMI 70.46± 3.42 70.40± 3.67 73.17± 3.19 73.13± 2.95
ARI 77.46± 3.26 77.49± 3.51 80.20± 2.99 80.10± 2.65
CCE 12.56± 2.31 7.64± 1.81 7.87± 2.02 7.35± 2.55

– +++ Acc 70.57± 13.09 74.44± 13.25 80.24± 12.11 75.05± 14.72
NMI 31.86± 18.20 36.37± 18.97 44.14± 17.03 36.69± 20.85
ARI 35.95± 20.75 40.30± 25.77 49.01± 19.87 41.22± 23.80
CCE 32.03± 11.23 21.40± 6.73 27.02± 9.92 23.75± 6.32

Unequal prop (1000, 1000) + Acc 95.01± 1.02 95.55± 0.90 96.07± 0.81 94.61± 0.87
NMI 78.21± 3.54 80.34± 3.05 82.32± 2.84 77.98± 2.78
ARI 86.25± 2.87 87.93± 2.27 89.51± 2.02 85.369± 2.07
CCE 3.75± 0.66 2.22± 0.39 3.26± 0.70 3.70± 0.55

– ++ Acc 91.11± 1.00 93.35± 1.08 94.01± 0.84 87.68± 4.34
NMI 71.45± 2.95 73.11± 2.89 75.08± 2.46 59.40± 9.43
ARI 80.99± 2.12 82.66± 2.48 84.34± 2.22 68.46± 9.57
CCE 14.12± 6.31 7.11± 3.57 9.12± 5.12 12.47± 5.21
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Table 5 continued

Proportion Size Degree of
overlap

Performance Algorithms

LBCEM [M1] [M2] [M3]

– +++ Acc 77.35± 5.84 81.62± 6.42 84.35± 0.72 67.53± 5.50
NMI 42.66± 6.02 49.35± 5.02 52.14± 1.71 24.20± 5.56
ARI 44.54± 8.96 61.65± 7.59 64.41± 1.66 28.59± 7.75
CCE 28.21± 9.63 22.65± 8.56 25.25± 9.81 24.37± 9.32

The degree of sparsity for all datasets is between 50 and 52%. A boldface type indicates a significantly better result regarding a Student Test (p
value lower than 0.05)

Table 6 Means (±standard deviations) of the time (in milliseconds) required for the convergence on each data structure

Size Degree of
overlap

Equal prop. Unequal prop.

LBCEM [M1] [M2] [M3] LBCEM [M1] [M2] [M3]

+ 17.9± 5.7 19.2± 6.5 20.8± 7.9 12.5± 3.0 17.6± 5.3 19.6± 5.8 20.5± 7.2 14.4± 4.00

(1000, 500) ++ 76.0± 31.5 83.6± 38.6 68.4± 22.5 45.7± 13.1 70.4± 31.3 70.4± 31.5 64.1± 24.5 56.0± 15.8

+++ 94.3± 31.9 136.4± 34.7 105.6± 24.2 50.9± 12.0 67.3± 14.4 84.1± 29.1 77.3± 25.6 44.8± 12.6

+ 96.8± 24.4 281.7± 125.7 104.1± 29.4 68.8± 28.9 127.3± 42.1 214.8± 135.4 132.2± 55.1 112.4± 33.7

(1000, 1000) ++ 244.6± 75.6 274.1± 64.8 225.9± 73.8 102.9± 28.8 182.3± 79.1 221.6± 113.2 155.7± 66.1 181.3± 26.7

+++ 228.4± 46.6 290.5± 49.3 316.7± 58.3 164.4± 47.8 185.2± 42.7 304.8± 62.9 218.9± 62.5 131.1± 57.3

A boldface type indicates a significantly better result regarding a Student Test (p value lower than 0.05)

remarkable on (+++) data set where [M3] is up to 2
times faster than [M2] and 3 times faster than [M1].

– These observations are valid regardless to the size
although differences of performances are more marked
on 1000 × 1000 than 1000 × 500 data sets.

As a summary, we can say that on (+) and (++) data sets
with equal proportions, all algorithms give comparable clus-
tering results and the speed of convergence observed for [M3]
makes it particularly attractive. However, the fall of its accu-
racy observed on data sets with unequal proportions suggests
that [M1] and [M2] are better candidates when the clusters
are unbalanced. For more complex data sets (high degree of
overlapping and unequal proportions), [M2] appears to be a
good trade-off between the number of parameters to estimate,
larger with [M1], and the clustering performance, lower with
[M3].

4.4 Model selection

In the previous sections we described and evaluated models
M1, M2 and M3 that seek a diagonal block structure in
binary data. These models are based on different assump-
tions about the heterogeneity of blocks and therefore involve
different number of parameters.We demonstrate that the size
of a data set as well as the proportions and the degree of sep-
arability of the co-clusters can influence the performance of
each model. Hereafter, we propose a strategy aiming to help

the user in selection of the most suitable model based on the
data set characteristics.

We choose to study this question from a model selection
point of view, i.e., identify the best model with respect to
a chosen penalized criteria. However, in the context of co-
clustering, commonly used penalized criteria such as AIC or
BIC are not directly available. In order to address this issue,
different model selection techniques have been adapted to
latent block models, including AIC3 (Van Dijk et al 2009),
ICL (Lomet 2012; Keribin et al 2015) and an approximation
of BIC (Keribin et al 2015). In what follows, we select ICL
over BIC for two reasons: (1) we are maximizing the com-
plete log-likelihood of the data which is directly involved
in ICL calculation; (2) the results presented in Keribin et al
(2015) demonstrate that ICL outperforms BIC on small data
sets and performs equallywell on large ones.We also exclude
AIC3 because it is mainly dedicated to the problem of pre-
diction and lacks a clear probabilistic interpretation. The
approximation of the IntegratedCompletedLikelihood (ICL)
(Biernacki et al 2000) adapted for latent block models can
be expressed as:

ICL(g,m) ≃ LC (z,w, θ) − g − 1
2

log(n)

− m − 1
2

log(d) − KM
2

log (nd),

where the second and the third terms are penalties related to
the estimation of the proportions of blocks and KM depends
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Table 7 The frequency of the models selected by the ICL criterion on
50 data sets of size 1000× 500 with well separated clusters, with equal
proportions and different degree of sparsity

Model Sparsity

∼50% ∼60% ∼70% ∼80%

M1 47 26 0 0

M2 3 24 7 0

M3 0 0 43 50

Table 8 Intermediate matrices obtained at iteration 1

xzw = (xzwkℓ ) =

⎛

⎝
2250 499 616
569 1875 620
590 486 2465

⎞

⎠

x̃zw =
(

xzwkℓ
z.kw.ℓ

)
=

⎛

⎝
0.0397 0.0106 0.0140
0.0098 0.0386 0.0102
0.0100 0.0099 0.0402

⎞

⎠

on the number of probability function parameters of the
model. In the case of the proposed models M1, M2, M3,
we have KM1 = gm, KM2 = g and KM3 = 1. Finally, the
fact that we are specifically seeking a structure of diagonal
blocks naturally lead us to take g = m.

In the results subsection presented above, we simulated
the data sets with a degree of sparsity between 50 and 52%
and came to the conclusion thatM1 andM2 aremore appro-
priate in this specific case. However, many real-world data
sets are known to have about 98% of zeros (see Table 10). To
cover this scenario,we propose to study the impact of sparsity
onmodel selection by simulating data sets of size 1000×500
with well-separated co-clusters and a degree of sparsity vary-
ing between 50 and 80%. In Table 7, we report the frequency
of the models selection obtained using ICL criterion. One
can observe that on data sets with degree of sparsity close to
50%, M1 is preferred over M2 and M3. When the degree
of sparsity increases and achieves 60%, the frequency of
picking M1 is approximately equivalent to the frequency
of M2 while M3 still remains unpicked. Finally, when the
sparsity is larger than 70%, M3 is selected almost all the
time.

The fact that sparsity strongly impacts the model selec-
tion can be explained with the following simple example: we
simulate a 1000× 500 data sets with 98% of zeros and well
separated co-clusters. We initialise [M1] and [M2] with the
true classes for the rows and columns partitions. We report
in Table 8 the intermediate matriced obtained after the first
iteration.

Although we can notice that the diagonal blocks contain
more 1’s than the blocks outside the diagonal, their number
is still negligible when compared with the number of 0’s.
Therefore, on such sparse data set, the hypothesis that akk’s

should be equal to one is not verified. The violation of this
hypothesis leads to very high values of ε on the diagonal
(≥ 1

2 ) and results in the inability of both [M1] and [M2] to
achieve the clustering tasks. However, [M3] is not sensitive
to this issue from the fact that, by assuming all ε’s equals,
these latter are not anymore involved in the estimations and
maximisation process of the algorithm.

To conclude, we can say that based on the presented
results, model selection based on a penalized information
criteria like ICL appears to be a good strategy when assess-
ing the quality of co-clustering models on a given data set.
It also confirms the fact that sparsity of the data set has an
important influence on the choice of an appropriate model
and justifies our decision to keep M3 when dealing with
highly sparse data.

4.5 Sparse binary data

Hereafter, we compare the behaviour of [M3] and the orig-
inal LBCEM on very sparse data in terms of clustering
performance. In order to evaluate the performance of both
algorithms on ∼90% sparse data and ∼98% data, we simu-
late data set of size 1000× 500 with both equal and unequal
proportions of blocks and choose g = 3 and the results are
reported in Table 9.

From these experiments we can see that on very sparse
data LBCEM and [M3] give comparable results in terms of
performance (see Table 9). Table 9 also shows the percentage
of success over 100 trials of each algorithm with random
initialisation. While [M3] almost always succeeds in finding
the block structure, LBCEM is not able to achieve this goal
almost half of the times on 90% sparse data and 90% of the
times on 98% sparse data. For the latter, [M3] always gives
better results in terms of performance than LBCEM and this
difference is all the more important when the proportions are
unequal.

Finally, Fig. 7 presents the accuracy, NMI and ARI
as functions of the sparsity degree. It can be easily seen
that [M3] is much more robust to increasing sparsity than
LBCEM. Next we confirm this observation on real data sets
with high sparsity.

5 Document-term partitioning

In this section, we study the effectiveness of our algorithm
for some well-known text data sets with different sizes and
balances (the balance coefficient is defined as the ratio of
the number of instances in the smallest class to the number
of instance in the largest class). Regarding the terminology
used before, each instance now is represented by a document
from a corpus while each feature is a term appearing at least
once in the corpus. We compare the clustering performance
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Table 9 Means of Acc, NMI and ARI (±standard deviations) computed on 200 simulated samples

Size Performance Sparsity

∼90% ∼98%

LBCEM [M3] LBCEM [M3]

(1000, 500) Eq. prop. Acc 98.05± 0.63 98.00± 0.41 89.71± 6.34 94.82± 1.05

NMI 90.76± 2.58 90.51± 1.71 68.89± 7.46 78.57± 3.04

ARI 94.23± 1.84 94.12± 1.18 73.91± 11.62 85.10± 2.89

Success (%) 58.9 100 8.2 100

(1000, 500) Uneq. prop Acc 97.24± 0.52 97.17± 0.45 83.64± 8.12 92.95± 0.80

NMI 86.53± 2.03 86.90± 1.88 65.71± 5.54 72.30± 2.70

ARI 92.26± 1.49 91.93± 1.31 70.59± 9.52 81.79± 2.16

Success (%) 60.1 100 11.2 100

Success indicates the percentage of times the algorithms achieved to return a partition with the requested number of co-clusters
Numbers in bold stand for the best obtained result

Fig. 7 Evolution of the mean of the accuracy (a), the NMI (b) and the ARI (c) for [M3] and LBCEM with the degree of sparsity of the data set.
We consider data sets of size 1000 × 500 with equal proportion

of our algorithm with state-of-the-art (co)-clustering algo-
rithms commonly used in the context of document × term
clustering.

5.1 Data sets

Hereafter, we give a detailed description of chosen data sets.

– Classic4 consists of 4 different document collections:
MED, CISI, CRAN and CACM. We also use a subset of
this data set (CISI, CRAN and MED only) referred to as
Classic3, in the sequel. Terms which appear in less than 3
documents, or in more than 95% of the documents were
removed. Moreover, Porter’s stemming was applied as
pre-processing step.

– CSTR contains abstracts of technical reports published
in the department of Computer Science at a research uni-
versity. These abstracts were divided into four research
areas: Natural Language Processing (NLP), Robotics/
Vision, Systems and Theory.

– Reviews and Sports are two document × term matri-
ces from the softwareCLUTO. 2 They were derived from
the San Jose Mercury newspaper articles. Reviews con-
tains documents on such topics as food, movies, music,
radio and restaurants; Sports contains articles about base-
ball, basketball, bicycling, boxing, football, golfing and
hockey.

– TDT2 consists of data collected from 6 sources, includ-
ing 2 newswires (APW, NYT), 2 radio programs (VOA,
PRI) and 2 television programs (CNN, ABC). We use a
subset of this data set where documents that appear in two
or more categories were removed and only the largest 30
categories were kept.

– RCV1 is a corpus of news-wire stories made available
by Reuters, Ltd. We use a subset of the RCV1 corpus
including categories C15, ECAT, GCAT and MCAT.

– 20 Newsgroups is a set of Usenet articles organized
into 20 topics. We also use two subsets of NG20: (1)
NG5 that includes the following topics: comp.os.ms-

2 http://www.cs.umn.edu/~cluto.
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Table 10 Description of the data sets in terms of size (n × p), number
of clusters (K ), sparsity (%0) and degree of balance of the clusters

Data set n × p K %0 Balance

CSTR 475 × 1000 4 96.60 0.399

NG2 500 × 2000 2 97.19 1

NG5 500 × 2000 5 97.19 1

Classic3 3891 × 4303 3 98.95 0.710

Classic4 7095 × 5896 4 99.41 0.323

Reviews 4069 × 18,483 5 98.99 0.099

Sports 8580 × 14,870 7 99.04 0.036

TDT2 9394 × 36,771 30 99.65 0.028

RCV1 9625 × 29,992 4 99.75 0.697

NG20 19,949 × 43,586 20 99.82 0.991

windows, comp.windows.x, rec.motorcycles, sci.crypt
and sci.space; and (2) NG2 containing two topics
rec.motorcycles and sci.crypt, sci.space.

The characteristics of all data sets used are reported in
Table 10. Originally each value of these data sets shows the
number of occurrences of a term in a document. The original
data were converted into binary by setting each value greater
than 0 to 1 and 0 otherwise, i.e., we only consider the absence
or presence of a term in a document.

5.2 Results

We compare our method to state-of-the-art (co)-clustering
methods including LBCEM for binary data (Govaert and
Nadif 2003), ITCC (Dhillon et al 2003), Block (Li 2005)
and SpCo (Dhillon 2001). ITCC is a divisive algorithm that
directly minimizes an objective function based on the mutual
information. We choose K-means and the simple Bernoulli
mixture model (CEM) (Celeux and Govaert 1992) as base-
lines. LBCEM and CEM belongs to the same family of
approach than our model. Block, ITCC and SpCo are co-
clustering algorithms. We note that SpCo specifically seeks
diagonal blocks.

For ITCC, we use the Matlab Toolbox for Biclustering
Analysis (MTBA) (Gupta et al 2013). For SpCo algorithm
we use the implementation proposed by Assaf Gottlieb.3.
We use the Matlab Statistics and Machine Learning Toolbox
for K-means and implement other (co)-clustering algorithms
using Matlab.

We set the number of clusters to the true number of classes
for all data sets.We run all algorithms 100 timeswith random
initializations and report the best result, i.e., the one that
minimizes (or maximizes depending on the algorithm) the

3 http://adios.tau.ac.il/.

corresponding criterion over all trials in Table 11. Figure 9
shows the computational costs for each algorithm.From these
experiments, we can observe the following statements:

– [M3] vs. LBCEM and CEM: on each data set (except
Classic3 where [M3] ≈ ITCC), [M3] significantly out-
performs the original LBCEM and CEM in terms of
accuracy, NMI and ARI. For instance, this gap is obvi-
ous on data sets from the 20 News Group corpus: CEM
is unable to propose a partition on NG2 and NG20, and
LBCEM’s ARI are never above 20%. Furthermore, [M3]
is faster than both CEM and LBCEM: up to 6 and 3.5
times faster respectively than these latter on Sports and
RCV1. Figure 8 is an illustration of the results of LBCEM
and [M3].One can see that while [M3] achieves to find a
clear diagonal structure on CSTR, the original LBCEM
fails.

– [M3] vs SpCo: [M3] is always better in terms of cluster-
ing performance than SpCo. We can also observe that on
RCV1 and Classic4, [M3] performs well while SpCo is
unable to propose a partition. We have deliberately cho-
sen not to report times obtained with SpCo. Although
the implementation we used is faithful to the method
described in Dhillon (2001), we believe it is not the opti-
mal one.

– [M3] vs Block and ITCC: we observe that ITCC outper-
forms Block on almost all data sets (except in the case
of CSTR and RCV1). ITCC is mostly effective when the
clusters are well separated, except for NG20 in terms
of NMI and ARI. However, on all other data sets [M3]
outperforms ITCC. In terms of speed, [M3] and Block
require comparable times on Classic4 and CSTR, but
on larger data sets [M3] is faster than Block. For the
same reason as stated for SpCo, times for ITCC are not
reported.

To conclude, we can make two remarks: (1) [M3] outper-
forms all other state-of-the-art (co)-clustering algorithms on
almost all data sets, especially on the most unbalanced one.
Indeed, its ARI for Sports, Reviews and TDT2 are signifi-
cantly higher than others; (2) it is important to underline that
we are processing the binary version of the document×term
matrices and not the original co-occurrence table that is sup-
posed to provide more information.

6 Conclusion

In this article, we proposed to study the problem of diago-
nal co-clustering using the framework of latent block model.
By imposing constraints on a parsimonious Bernoulli latent
block model that only depends the degree of heterogeneity
in blocks and the proportions of rows and columns, respec-
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Table 11 Accuracy, normalized
mutual information and adjusted
rand index obtained on binary
data sets

Data set Metric Algorithms

Kmeans CEM LBCEM Block ITCC SpCo [M3]

CSTR Acc 85.05 86.32 83.79 81.05 69.94 79.79 90.11

NMI 64.74 66.95 69.91 63.31 70.00 66.67 77.92

ARI 68.14 71.60 71.73 60.15 65.79 70.20 81.55

NG2 Acc – – 55.80 72.01 90.80 90.20 95.20

NMI – – 1.87 20.56 56.57 55.35 72.79

ARI – – 1.22 24.51 66.52 64.57 81.68

NG5 Acc 33.07 33.67 38.28 53.21 54.31 60.32 80.36

NMI 16.61 11.66 17.50 34.15 36.74 50.75 55.40

ARI 4.08 7.82 8.79 29.96 31.45 37.31 56.82

Classic3 Acc 90.47 99.20 64.02 92.24 98.46 70.60 98.12

NMI 73.81 95.47 43.87 74.71 92.32 59.64 90.77

ARI 73.34 97.58 39.87 79.29 95.42 40.20 94.40

Classic4 Acc 74.88 77.80 56.11 58.34 64.87 – 85.47

NMI 51.46 64.23 30.12 39.23 50.96 – 66.09

ARI 43.28 57.77 21.71 29.76 42.56 – 62.29

Reviews Acc 53.58 54.56 40.53 53.94 57.97 57.97 65.59

NMI 42.76 41.81 21.25 42.23 45.71 45.71 53.44

ARI 29.81 25.64 11.75 29.17 34.51 34.51 48.98

Sports Acc 41.81 52.16 35.85 50.16 44.73 55.73 78.08

NMI 33.21 48.05 26.35 45.29 49.16 47.18 63.43

ARI 13.67 29.33 15.30 24.62 18.67 34.45 68.15

TDT2 Acc 47.60 18.19 39.73 46.55 56.32 35.31 74.75

NMI 62.02 12.81 59.09 60.91 71.25 51.78 76.66

ARI 32.36 8.21 32.64 30.71 61.24 29.45 67.83

RCV1 Acc 54.36 58.03 39.82 53.92 65.58 – 74.18

NMI 32.92 36.47 15.21 32.67 41.35 – 51.13

ARI 24.08 26.62 11.49 24.01 38.56 – 51.00

NG20 Acc 22.46 7.21 23.57 20.05 43.01 24.51 55.71

NMI 26.03 2.34 35.17 22.71 55.18 29.35 52.57

ARI 5.37 1.31 13.75 4.56 41.75 5.71 39.20

(–) denotes that the algorithm cannot propose a partition with a required number of co-clusters
Numbers in bold stand for the best obtained result

Fig. 8 a Original CSTR data, b CSTR reorganized according to partitions obtained with LBCEM, and c CSTR according to partitions obtained
with [M3]
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Fig. 9 Time (in milliseconds) required for the convergence on each data set

tively we derived three models. We set our approach in the
classifications maximum likelihood context and carried out
the optimisation Classification EM algorithm yielding the
development of three algorithms: [M1], [M2] and [M3]. We
evaluated them on synthetic data in order to highlight the
strength and weakness of each one on different data struc-
ture and came to the conclusion that on data sets with a
medium degree of sparsity,M1 andM2 are the most accu-
rate while on very sparse data the last model, M3, remains
the only valid one. In order to strengthen these observations,
we also proposed to use the ICL criterion formodel selection,
that confirmed the interest ofM3 for sparse data. Compared
with other methods, we also demonstrated that our proposed

M3 is more effective for document × term partitioning and
competitive in terms of speed. Therefore, we can argue that
seeking a diagonal structure is of a considerable interest in
the context of document clustering, where the data sets are
highly sparse.

Further research perspectives are many. The most impor-
tant one is to use variational EM algorithm for parameters
optimization. This algorithm is known to be more accurate
as its goal is to find soft partitions of rows and columns.
In real-world applications, the knowledge of the number of
co-clusters is mostly required. Another initiative will be to
investigate an efficient way to assess this parameter. In partic-
ular, we proposed to study the problem of model selection by
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using ICL, an information penalized criteria; one could, for
instance, extend this strategy for determining an appropriate
number of co-clusters.
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