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a b s t r a c t

We propose a hard and a fuzzy diagonal co-clustering algorithms built upon the double K-means to
address the problem of document-term co-clustering. At each iteration, the proposed algorithms seek a
diagonal block structure of the data by minimizing a criterion based on both the variance within the class
and the centroid effect. In addition to be easy-to-interpret and effective on sparse binary and continuous
data, the proposed algorithms, Hard Diagonal Double K-means (DDKM) and Fuzzy Diagonal Double K-
means (F-DDKM), are also faster than other state-of-the-art clustering algorithms. We evaluate our
contribution using synthetic data sets, and real data sets commonly used in document clustering.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Co-clustering, also known as biclustering or block-clustering,
involves simultaneous clustering of a set of observations and a set
of features in a data matrix. By creating permutations of rows and
columns, co-clustering algorithms aim to reorganize the initial
data matrix into homogeneous blocks. These blocks, also called co-
clusters, can therefore be seen as subsets of the data matrix
characterized by a set of observations and a set of features whose
elements are similar. Since the work of Hartigan [1,2] and Govaert
[3], co-clustering techniques have proven their importance in
many areas such as bioinformatics [4–10], recommender systems
[11,12], web mining [13,14] and text mining [15]. For a survey of
the different structures of co-clusters and the different algorithms
and approaches employed, the reader is referred to [16–22].

Co-clustering algorithms offer several advantages over simple
clustering algorithms: for instance, they reduce the initial matrix
into a simpler form with the same basic structure and require far
less computation when compared with separate processing of the
initial data set and its transpose. As a result, these methods are of
increasing interest to the data mining community. One of the
constraints that can be incorporated into a co-clustering method is
to seek a block diagonal structure, i.e., the number of clusters of
observations is equal to the number of clusters of features. An
illustration of this idea is given in Fig. 1 where (a) represents an
original binary matrix, (b) represents the same matrix after a
proper permutation of rows whilst (c) adds a permutation of

columns resulting in a clear block diagonal structure. When the
data set is typically represented by a sparse high-dimensional
document! term matrix, these methods have proven again to be
efficient when dealing with the problem of clustering or co-
clustering. Their objective is to group documents based on words
within them and to group words based on documents in which
they appear. As we will see in this paper, seeking a diagonal
structure on document ! term matrices improve clustering results.

Conventional clustering methods often encounter issues when
dealing with the sparsity and the high dimensionality that char-
acterize this type of data. In [23], the author proposed a block
diagonal algorithm applied to binary data. This algorithm alter-
nates the clustering of observations and features minimizing the
error between the original data matrix and the reconstructed
matrix based on the cluster structure. In [24], the authors pro-
posed ITCC, a divisive algorithm that directly minimizes an
objective function based on the mutual information. In [15] a
spectral algorithm has been proposed; it consists in building a
bipartite graph from the document! term matrix which is parti-
tioned to minimize the cut objective function. Another attempt to
use graph related criteria for block diagonal clustering was pre-
sented in [25]. The proposed spectral co-clustering algorithm
maximizes a generalization of the modularity that is further casted
as a trace maximization problem.

Among different approaches devoted to co-clustering, the fuzzy
approach is probably the least investigated one. In fuzzy co-clus-
tering, observations no longer belong to one particular co-cluster
but to all of them with a certain degree of belonging. Similar to
hard co-clustering, we can distinguish between partitioning and
probabilistic (co)-clustering approaches. The probabilistic methods
can use the framework of mixture model as in [26] where the
authors proposed block fuzzy c-models (block FCM) to deal with
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binary data. More recently, in [27] the authors proposed a block
fuzzy k-modes (block FKM) to handle categorical data. Most of the
fuzzy co-clustering algorithms belong to the family of partitioning
methods and were developed to deal with co-occurrence tables
and thus to address the problem of document clustering. Among
them, we can cite the FCCM algorithm introduced in [28] where
the fuzziness was introduced based on the entropy. They aim at
clustering data in which features can be categorical and the dis-
tance between objects is not explicitly available by maximizing the
degree of aggregation among the clusters. In [29], a version of
FCCM more suitable for high dimensional data named Fuzzy-
CoDok has been proposed; it uses Gini Index instead of the
entropy to introduce the fuzziness. One major issue of Fuzzy-
CoDok is that the fuzziness is introduced using Gini Index without
taking into account the Khun and Tucker conditions [30] needed to
ensure the optimal solution. Therefore, the convergence to a local
optimum cannot always be guaranteed. For both FCCM and Fuzzy-
CoDok the co-clustering is achieved to be a combination of object
partitioning and feature ranking while in [31] and then [32], the
authors proposed dual partitioning based on fuzzy co-clustering
algorithms using the Ruspinis condition as the partitioning con-
straint. Some recent advances in fuzzy (co)-clustering and related
subjects include [33–36].

In this paper we propose two new diagonal co-clustering
algorithms based on the minimization of heterogeneity measures
of blocks. Each measure relies on the variance intra blocks and the
centroid effect studied in hierarchical clustering [37] and defined
as the squared deviation from the mean entry in each block and
the maximum entry in the input matrix. The proposed algorithms
have strong convergence guarantees, are very efficient in terms of
both co-clustering quality and computational speed on sparse data
and therefore can deal with high dimensional data sets.

The remainder of this paper is organized as follows. Section 2
provides the needed background on Double K-means (DKM)
algorithm and presents the challenge of diagonal co-clustering.
Section 3 presents the Diagonal Double K-means (DDKM) algo-
rithm that we propose. In order to deal with the situation of
overlapping co-clusters we introduce Fuzzy Diagonal Double K-
means (F-DDKM) in Section 4. Section 5 is devoted to numerical
experiments on synthetic data sets to assess both algorithms on
binary and continuous data. In Section 6, we compare DDKM and
F-DDKM with state-of-the-art (co)-clustering algorithms on real
document! term data sets showing the appropriateness of our
contribution. Section 7 is devoted to a discussion of the limitations
of our approach. The final section sums up the study and gives
recommendations for further research.

Notation. Let X≔fxij; iA I; jA Jg be a data matrix of size n! p
where I ¼ f1;…;ng and J ¼ f1;…; pg. The set I corresponds to the set
of n objects and the set J to the set of p attributes. In the sequel, our

aim consists in obtaining co-clustering of X. Let Z¼ fz1;…; zng be a
label vector, where ziAf1;…;Kg, that denotes the partition of I into
K clusters and W¼ fw1;…;wpg where wjAf1;…;Hg denotes the
partition of J into H clusters. The partition of I (respectively J) can
be represented by a matrix of elements in f0;1gK (respectively f0;
1gH) satisfying

PK
k ¼ 1 zik ¼ 1 (respectively

PH
h ¼ 1 wjh ¼ 1). Finally, to

simplify the notation, the sums relating to rows, columns, row and
column clusters are subscripted respectively by the letters
i¼ 1;…;n, j¼ 1;…; p and, k¼1,…,K, respectively, without indicat-
ing the implicit limits of variation. For example, the sum

P
i;k

stands for
Pn

i ¼ 1
PK

k ¼ 1.

2. Co-clustering and diagonal block structure

The co-clustering can be formulated as the search for a good
matrix approximation of the original data matrix X. The quality of
the obtained result is determined by the approximation error that
can be measured by a large class of loss functions, e.g., the squared
Euclidean distance. This approximation is generally achieved
through an alternate least square minimization process (see, for
instance, [38,16,39]). The Double K-means algorithm (DKM) [22] is
also based on this principle.

2.1. Double K-means algorithm

The aim of DKM is to minimize an objective function JðZ;W;
GÞ where Z and W are the partitions and G≔fgkh; kAf1; …;Kg;h
Af1;…;Hgg is a K ! H matrix, which can be viewed as a summary
of the data matrix X (see Fig. 2).

Each element gkh of G is called a prototype of the co-cluster
Xkh≔fxij; zikwjh ¼ 1g. DKM adopts the squared Euclidean distance to
measure the dissimilarity between the matrix X and the structure
described in Z, W and G. Therefore, JðZ;W;GÞ is given by

J ðZ;W;GÞ ¼
X

i;k;j;h

zik !wjhðxij%gkhÞ
2 ¼ JX%ZGWT J2; ð1Þ

where J & J denotes the Frobenius norm. It is easy to see that for a
fixed ðZ;WÞ the optimal values of G are the means of Xkh's. The
optimal partitions Z and W are obtained using an iterative algo-
rithm. A version of DKM is presented in Algorithm 1 where z:k
(resp. w:h) represents the cardinality of the k-th cluster (resp. h-th
cluster).

Algorithm 1. Double K-means (DKM).

input: X, K, H
initialization: Z and W
repeat

(1) Compute gkh ¼
P

i;j
zikwjhxij
z:kw:h

, 8k;h

Fig. 1. (a) Original binary data, (b) data reorganized according to rows and (c) data reorganized according to rows and columns.
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(2) Update zi ¼ arg mink
P

j;hwjhðxij%gkhÞ
2, 8 i

(3) Update wj ¼ arg minh
P

i;kzikðxij%gkhÞ
2, 8 j

until the J value change is small or there is no change.
output: G, Z and W

2.2. Block diagonal structure

The DKM algorithm appears to be not inefficient when looking
for a one-to-one correspondence between two partitions Z and W.
In order to deal with this specific case, we have to consider two
assumptions: (1) we assume that H¼K; (2) the diagonal structure
involves imposing some constraints on G, for instance by taking
gkk ¼ δ 8k. This leads us to the following criterion:

JðX;Z;WÞ ¼
X

i;j;k

zikwjkðxij%δÞ2; ð2Þ

where δ is assumed to be known. The choice of this parameter will
be discussed in the next section. The partitions couple ðZ;WÞ
optimizing the criterion given in Eq. (2) is found using the fol-
lowing iterative algorithm:

' Update Z, the partition of objects, withW fixed. This leads to the
following formula zi ¼ arg mink

P
jwjkðxij%δÞ2,

' Update W, the partition of features, with Z fixed. This leads to
the following formula wj ¼ arg mink

P
izikðxij%δÞ2.

From these formulae, one observes that seeking the diagonal
structure indirectly introduces a strong dependency between
objects assignments (respectively, features assignments) to a block
and the number of features that belong to this block (respectively,
the number of objects). If we consider the assignment of objects,
we have ðxij%δÞ2Z0; 8 i; j; therefore, a higher number of features
in a given block will decrease the chance for an object to be
assigned to this particular block. The same phenomenon occurs in
the assignment of features. Consequently, we have to take into
account the size of each co-cluster in order to avoid empty blocks.

3. Diagonal Double K-means

3.1. Criterion and proposed algorithm

In order to correct the bias introduced by the diagonal structure
and to avoid vanishing blocks, we propose a modified criterion
that takes into account the number of elements in a block. This
criterion takes the following form:

JðX;Z;WÞ ¼
X

k

1
z:kw:k

X

i;j

zikwjkðxij%δÞ2; ð3Þ

where z:k ¼
P

i zik and w:k ¼
P

j wjk denote the number of objects
and the number of features in the k-th block, respectively. Fur-
thermore, it is interesting to note that the criterion given in Eq. (3)

may be expressed depending on the variance of a given block ðZk;
WkÞ and the squared deviation of its mean from the maximum
input of the data:

JðX;Z;WÞ ¼
X

i;j;k

zikwjk

z:kw:k
ðxij%xkÞ

2þ
X

i;j;k

zikwjk

z:kw:k
ðxk%δÞ2;

where xk ¼ 1
z:kw:k

P
i;jzikwjkxij denotes the mean of the k-th block.

Thus, the criterion can be rewritten as

JðX;Z;WÞ ¼
X

k

1
z:kw:k

X

i;j

zikwjkðxij%xkÞ
2þ
X

k

ðxk%δÞ2
X

i;j

zikwjk

z:kw:k
:

Since
P

i;j
zikwjk
z:kw:k

¼ 1
z:k

P
i zik !

1
w:k

P
j wjk ¼ 1, we obtain

JðX;Z;WÞ ¼
X

k

s2kþ
X

k

ðxk%δÞ2; ð4Þ

where s2k ¼
1

z:kw:k

P
i;j zikwjkðxij%xkÞ

2 denotes the variance within the
k-th block. The first term in Eq. (4) ensures the homogeneity of each
block while the second one provides the homogeneity between
centers of the blocks and δ. This objective function (Eq. (3)) can be
optimized by an alternating optimization of two conditional criteria
given W and Z, respectively:

~J1ðX;ZjWÞ ¼
X

k

1
z:k

X

i

zik
1
w:k

X

j

wjkðxij%δÞ2

and

~J2ðX;WjZÞ ¼
X

k

1
w:k

X

j

wjk
1
z:k

X

i

zikðxij%δÞ2:

The optimization of ~J1 and ~J2 leads to the following update rules:

zi ¼ arg min
k

1
w:k

X

j

wjkðxij%δÞ2; ð5Þ

wj ¼ arg min
k

1
z:k

X

i

zikðxij%δÞ2: ð6Þ

The proposed algorithm, called Diagonal Double K-means
(DDKM) is computationally efficient as its complexity can be
shown to be Oðτ ! npKÞ, where τ denotes the number of iterations
required for convergence, n, p and K are the number of objects (i.e.,
rows), features (i.e., columns) and co-clusters, respectively. The
DDKM algorithm defines a sequence ðZðtÞ;WðtÞÞ which mono-
tonically decreases the criterion JðX;Z;WÞ and is summarized in
Algorithm 2.

Algorithm 2. Diagonal Double K-means (DDKM).

input: X and K
initialization: Z, W and δ
repeat

(1) Update Z according to Eq. (5)
(2) Update W according to Eq. (6)

until the J value change is small or there is no change
output: Z and W

3.2. Choice of δ

Herein, we discuss the choice of δ. Specifically, we compare two
different settings that can be possibly used to define δ: (1) the
value of δ obtained using the optimization procedure and (2) the
value of δ set up manually to the maximum entry of the matrix.

1. If we consider δ as an unknown parameter, its optimal value for
the criterion to be minimized is equal to the average of blocks
means. Indeed, with Z and W fixed and by setting the derivative
of J (Eq. (3)) to zero we obtain δ¼ 1

K
P

kxk. Although this value of

Fig. 2. Original data matrix X and its summary after co-clustering into 6 co-
clusters.
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δ is optimal, we can observe that in the context of sparse data, i.
e, when the data matrix contains a high percentage of 0, its
value will tend to 0 leading to a diagonal structure of blocks of
0's. An illustration of the resulting co-clustering solution with
this value on the CSTR data set (described in the numerical
experiments section) is given in Fig. 3(c).

2. Another way to proceed is to set the value of δ at the initi-
alisation step. DDKM aims at grouping objects and features with
the strongest association possible. For instance, in the case of a
binary data matrix X, the strongest association between an
object i and a feature j is given by xij ¼ 1 which is the maximum
possible value of X. As a matter of fact, choosing the maximum
allows to guarantee the homogeneity of diagonal blocks while
ensuring blocks of 0 outside. In [37,40], the authors proposed
hierarchical algorithms based on this idea. Fig. 3(b) presents the
reorganized matrix obtained using this value of δ. From this
Figure, we can see that the resulting matrix has a more clear
diagonal structure than the one presented in Fig. 3(c) and thus it
justifies our motivation to study this parameter setting.
It is important to stress that this approach requires values of a
data matrix to be comparable. This is the case for binary or
normalized data, as we will see in the section devoted to the
document-term partitioning.

4. Fuzzy block diagonal structure

The fuzziness principle allows a description of uncertainties
that often appear in real world applications. For both previous
algorithms, Double K-means and Diagonal Double K-means, we
assume that objects and variables belong to one single block.
However in some cases, different co-clusters may overlap and
hence objects and variables may have multiple memberships.
Fig. 4 illustrates a situation of a binary matrix where two co-
clusters overlap at features 9–10 and objects 8–12. In this case an
equal membership degree assignment to these objects and fea-
tures instead of a hard assignment would be more relevant and
accurate. In order to manage this type of situation we propose a
fuzzy version of DDKM called Fuzzy Diagonal Double K-means.

4.1. Criterion and proposed algorithm

The Fuzzy Diagonal Double K-means (F-DDKM) algorithm
optimizes an adequacy criterion JF defined as

JF ¼
X

k

1

uα:kv
β
:k

X

i;j

ðuikÞ
αðvjkÞ

βðxij%δÞ2 ð7Þ

in which δ denotes the maximum value of the data matrix X. U≔
fuik; i¼ 1;…;n; k¼ 1;…Kg where uik denotes the membership
degree of object i in cluster k and V≔fvjk; j¼ 1;…; p; k¼ 1;…;Kg
where vjk denotes the membership degree of variable j in cluster k.
The parameters αA ð1;1Þ and βAð1;1Þ control the fuzziness of
membership for each object and each variable, respectively. The
larger they are, the fuzzier the resulting co-clusters will be. The
parameters uα:k and vβ:k denote

P
iðuikÞ

α and
P

jðvjkÞ
β , respectively.

Finally, the objective function is minimized subject to the follow-
ing constraints:
X

k

uik ¼ 1; uikA ½0;1* ð8Þ

and
X

k

vjk ¼ 1; vjkA ½0;1*: ð9Þ

Following the relation established for the hard co-clustering
context, we obtain

JF ðX;U;VÞ ¼
X

k

ŝ2kþ
X

k

ðx̂k%δÞ2 ð10Þ

where

x̂k ¼
1

uα:kv
β
:k

X

i;j

ðuikÞ
αðvjkÞ

βxij and ŝ2k ¼
1

uα:kv
β
:k

X

i;j

ðuikÞ
αðvjkÞ

βðxij% x̂kÞ
2

are the mean and the variance of the k-th block. In the same
manner, the first term of Eq. (10) ensures the homogeneity of each
block while the second one provides the homogeneity between
centers of the blocks and δ.

To minimize the criterion JF defined in Eq. (7) with respect to
the necessary optimality conditions given by Eqs. (8) and (9), we
use the method of Lagrange multipliers and obtain the following
Lagrangian function:

JF ¼
X

i;j;k

1

uα:kv
β
:k

ðuikÞ
αðvjkÞ

βðxij%δÞ2%
X

i

θi

X

k

uik%1

 !

%
X

j

λj
X

k

vjk%1

 !

where θi and λj are the Lagrange multipliers. Calculating the par-
tial derivative of JF and setting them to zero, gives the following
formulae:

uik ¼
XK

r ¼ 1

ðDik=DirÞ
1

α% 1

" #%1

8 i; k; ð11Þ

Fig. 3. (a) CSTR the original data set, (b) CSTR reorganised according to the partitions when δ¼maxi;jxij, (c) CSTR reorganised according to the partitions when δ is estimated
by 1

K
P

kxk .

C. Laclau, M. Nadif / Neurocomputing 193 (2016) 133–147136



where Dik ¼ 1
vβ
:k

P
jðvjkÞ

βðxij%δÞ2 and

vjk ¼
XK

r ¼ 1

ðD0
ik=D

0
irÞ

1
β% 1

" #%1

8 j; k; ð12Þ

where D0
jk ¼

1
uα
:k

P
iðuikÞ

αðxij%δÞ2. The optimization of JF ðX;U;VÞ can
then be performed by optimizing two conditional criteria JF ðX;Uj
VÞ and JF ðX;VjUÞ given V and U respectively. Thus, F-DDKM
defines a sequence ðUðtÞ;VðtÞÞ which monotonically decreases
alternatively JF ðX;UjVÞ and JF ðX;VjUÞ and therefore the update of
U and V defined in Eqs. (11) and (12) causes the objective function
JF to be non-increasing. We have

JF ðX;U
ðtÞ;VðtÞÞZ JF ðX;U

ðtþ1Þ;VðtÞÞZ JF ðX;U
ðtþ1Þ;Vðtþ1ÞÞ:

The sequence ðUðtÞ;VðtÞÞ reaches its stationary value at iteration T.
Due to the uniqueness of U and V, at T we have

JF ðX;U
ðTÞ;VðTÞÞ ¼ JF ðX;U

ðTþ1Þ;VðTÞÞ ¼ JF ðX;U
ðTþ1Þ;VðTþ1ÞÞ:

The criterion JF ðX;U;VÞ converges to a stationary point and is
bounded because JF ðX;U;VÞZ0. The exactly same reasoning is
valid for the convergence of DDKM.

F-DDKM is also computationally efficient and its complexity
can be easily shown to be O τ ! npK2

! "
. The principal steps of F-

DDKM are presented in Algorithm 3 and illustrated on a toy
example in the next subsection.

Algorithm 3. Fuzzy Diagonal Double K-means (F-DDKM).

input: X and K
initialization: U, V and δ
repeat

(1) Update U according to Eq. (11).
(2) Update V according to Eq. (12).

until the JF value change is small or there is no change
output: U and V

4.2. Illustration of F-DDKM

In this subsection, we aim to illustrate the behaviour of F-
DDKM on a simple example. Let us consider a binary data matrix X
of size 16!14 presented in Table 1. The number of clusters in this
matrix is equal to 2.

In the sequel, we describe the main steps of F-DDKM allowing
to obtain the partitioning of X. Tables 2 and 3 show the object and
the feature partitions obtained from the initialization to the con-
vergence of F-DDKM.

Input: Let K be the real number of row and column clusters,
i.e. 2.

Initialization: We randomly initialize the membership matri-
ces U and V with respect to the constraints given by Eqs. (8) and
(9). We also set δ to 1 (the maximum).

Step 1: Vð0Þ and δ are fixed. We update the membership matrix
of objects U following Eq. (11).

Fig. 4. Illustration of two overlapping co-clusters: (a) original binary data, (b) data reorganized according to the partition of rows, and (c) data reorganized according to row
and column clusters with overlapping.

Table 1
Binary data matrix X.

Objects Features

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A 1 1 1 0 1 1 1 1 0 0 0 0 0 0
B 0 1 1 1 1 1 1 1 1 0 0 0 0 0
C 1 0 1 1 1 1 1 1 0 0 0 0 0 0
D 0 0 1 1 1 0 1 0 0 0 0 0 0 0
E 0 0 1 0 1 1 0 1 0 0 0 0 0 0
F 0 0 0 0 1 1 1 1 0 0 0 0 0 0
G 0 0 0 0 0 1 0 1 1 0 0 0 0 0
H 0 0 0 0 1 0 1 1 1 0 0 0 0 0
I 0 0 0 0 0 0 1 1 1 0 0 1 0 0
J 0 0 0 0 0 0 0 1 1 1 0 1 0 0
K 0 0 0 0 0 0 0 1 1 1 0 1 1 1
L 0 0 0 0 0 0 1 1 1 1 0 1 1 1
M 0 0 0 0 0 1 1 0 1 1 1 1 1 1
N 0 0 0 0 0 0 1 1 0 1 1 1 0 0
O 0 0 0 0 0 0 0 1 1 0 0 0 0 0
P 0 0 0 0 0 0 0 0 1 0 1 0 0 0

Table 2
Step by step partitions of objects into two clusters obtained with F-DDKM.

Objects Uð0Þ Uð1Þ … Uð5Þ

1 2 1 2 1 2

A 0.41 0.59 0.90 0.10 … 1.00 0.00
B 0.37 0.63 0.10 0.90 … 1.00 0.00
C 0.32 0.68 0.37 0.63 … 1.00 0.00
D 0.73 0.27 0.96 0.04 … 1.00 0.00
E 0.65 0.35 0.85 0.15 … 1.00 0.00
F 0.36 0.64 0.99 0.01 … 1.00 0.00
G 0.59 0.41 0.06 0.94 … 0.89 0.11
H 0.43 0.57 0.96 0.04 … 1.00 0.00
I 0.27 0.73 0.94 0.06 … 0.08 0.92
J 0.19 0.81 0.13 0.87 … 0.00 1.00
K 0.51 0.49 0.04 0.96 … 0.00 1.00
L 0.79 0.21 0.88 0.12 … 0.00 1.00
M 0.51 0.49 1.00 0.00 … 0.00 1.00
N 0.74 0.26 1.00 0.00 … 0.00 1.00
O 0.50 0.50 0.09 0.91 … 0.27 0.73
P 0.27 0.73 0.78 0.22 … 0.00 1.00

C. Laclau, M. Nadif / Neurocomputing 193 (2016) 133–147 137



Step 2: Uð0Þ and δ are fixed. We update the membership matrix
of features V (Eq. (12)).

Finally, we compute the value of the criterion JF (see Eq. (7)).
After the first iteration, its value is 1.18. We repeat steps 1 and
2 until convergence that is achieved after 5 iterations. The values
of the criterion at each iteration are 1.18,1.03,0.96,0.84,0.84. From
matrices Uð5Þ and Vð5Þ, we can deduce Z and W, the hard partition
of objects and variables, respectively. This is achieved by using the
maximum a posteriori (MAP) principle. Therefore we obtain the
following partitions: Z¼ ð1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2ÞT and
W¼ ð1;1;1;1;1;1;1;1;2;2;2;2;2;2ÞT .

5. Evaluation of DKKM and F-DDKM on synthetic data sets

Before evaluating our two algorithms in the document-term
partitioning context, we propose to study their behaviour on
binary and continuous simulated data. Our motivation is two-fold:
first, both types of data can be fully considered by our hard and
fuzzy approaches, secondly in document clustering these two
types are commonly handled.

5.1. Simulation process

We use the latent block model proposed in [41,21] to simulate
binary and continuous data (for details see, for instance, [39]).
Denoting by Z and W the sets of possible labels Z and W, in this
model, we assume that for each co-cluster Xkh the values xij are
distributed according to the following probability density

function:

f ðX;ΘÞ ¼
X

ðZ;WÞAZ!W
∏
i;k
πzik
k ∏

j;h
ρwjh

h ∏
i;j;k;h

φðxij;θkhÞ: ð13Þ

This model can be represented by a graphical model depicted in
Fig. 5.

In this article, we set the number of rows cluster and the
number of columns cluster to the same value, i.e., K¼H. For con-
tinuous data, the values xij are distributed according to a Gaussian
distribution N ðμkh;σ2

kℓÞ with μkhAR, σ2
khARþ , and φðxij;θkhÞ ¼

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

kh

p exp% ðxij %μkhÞ
2

2σ2
kh

$ %zikwjh

. This model is then parametrised by

Θ¼ ðπ;ρ;θÞ, where π¼ ðπ1;…;πK Þ, ρ¼ ðρ1;…;ρK Þ and
θ¼ ðθ11 ¼ ðμ11;σ2

11Þ;…;θkh ¼ ðμkh;σ2
khÞ;…;θKK ¼ ðμKK ;σ2

KK ÞÞ.
For binary data sets, the values xij are distributed according to a

Bernoulli distribution BðγÞ with γA ½0;1* and φðxij;θkhÞ ¼

γxijkhð1%γkhÞ
ð1%xijÞ

h izikwjh
. This model is then parametrised by Θ¼ ðπ

;ρ;θÞ where π¼ ðπ1;…;πK Þ, ρ¼ ðρ1;…;ρK Þ and
θ¼ θ11 ¼ γ11;…;θKK ¼ γKK

& '
.

Algorithm 4 presents in details, the simulation process for both
types of data.

Algorithm 4. Simulation of data.

input: n, p, K.
(1) Simulate Z according to a Multinomial distribution with

parameters ð1;π1;…;πK Þ.
(2) Simulate W according to a Multinomial distribution with

parameters ð1;ρ1;…;ρK Þ.
(3) Simulate each co-cluster Xkh according to Gaussian density

with ðμkh;σ2
khÞ for continuous data and Bernoulli density

with γkh for binary data.
output: data matrix X of size ðn! pÞ

5.2. Performance evaluation

In order to assess and to compare the performance of the
proposed algorithms, we use three commonly adopted metrics
including accuracy, the Normalized Mutual Information [42] and
the Adjusted Rand Index [43]. We focus only on the quality of row
clustering. Clustering accuracy noted Acc is one of the most widely
used evaluation criterion and is defined as

Acc¼
1
n
max

X

Ck ;Lℓ

TðCk;LℓÞ

" #

;

where Ck is the k-th cluster in the final result, and Lℓ is the true
ℓ-th class. TðCk;LℓÞ is the proportion of objects that were correctly
recovered by the clustering algorithm, i.e., TðCk;LℓÞ ¼ Ck \ Lℓ.
Accuracy computes the maximum sum of TðCk;LℓÞ for all pairs of
clusters and classes that do not overlap.

The second measure used is the Normalized Mutual Informa-
tion (NMI) calculated as follows:

NMI¼

P
k;ℓ

nkℓ

n
log

nkℓ

nkn̂ℓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

k
nk

n
log

nk

n

! " P
ℓ
n̂k

n
log

n̂ℓ

n

( )s

where nk denotes the number of data contained in the cluster
Ckð1rkrKÞ, n̂ℓ is the number of data belonging to the class C0kð1
rℓrKÞ and nkℓ denotes the number of data that are in the
intersection between the cluster Ck and the class C0k.

The last measure, Adjusted Rand, noted ARI, measures the
similarity between two clustering partitions. From a mathematical
standpoint, the Rand index is related to the accuracy. The adjusted

Table 3
Step by step partitions of features into two clusters obtained with F-DDKM.

Features V ð0Þ V ð1Þ … V ð5Þ

1 2 1 2 1 2

1 0.1489 0.85 0.53 0.47 … 1.00 0.00
2 0.30 0.70 0.16 0.84 … 1.00 0.00
3 0.54 0.46 0.59 0.41 … 1.00 0.00
4 0.07 0.93 0.04 0.96 … 1.00 0.00
5 0.72 0.28 1.00 0.00 … 1.00 0.00
6 0.43 0.58 0.22 0.78 … 1.00 0.00
7 0.93 0.07 1.00 0.00 … 1.00 0.00
8 0.40 0.60 0.00 1.00 … 1.00 0.00
9 0.21 0.79 0.00 1.00 … 0.00 1.00
10 0.37 0.63 0.32 0.68 … 0.00 1.00
11 0.91 0.09 1.00 0.00 … 0.00 1.00
12 0.68 0.32 0.87 0.13 … 0.00 1.00
13 0.61 0.39 0.55 0.45 … 0.00 1.00
14 0.25 0.75 0.55 0.45 … 0.00 1.00

Fig. 5. Latent block model as a graphical model.
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Fig. 6. Visualisation of binary reorganized data matrix with three degree of overlap: (a) þ , (b) þþ , (c) þþþ . Dark points represent 1's and white point 0's.

Table 4
Means of Acc, NMI and ARI (7 standard errors), in %, computed on 100 simulated samples.

Size Degree of overlap Metric Algorithms

Binary Continuous

DDKM F-DDKM DDKM F-DDKM

(1000, 500) Acc 0.9970.00 0.9970.00 0.9970.00 0.9970.01
þ NMI 0.9670.02 0.9670.02 0.9470.01 0.9570.02

ARI 0.9870.01 0.9870.01 0.9670.01 0.9770.02

(1000, 500) Acc 0.9270.00 0.9270.00 0.8870.01 0.9070.02
þþ NMI 0.8270.02 0.8270.02 0.8570.03 0.8670.03

ARI 0.8970.02 0.8970.02 0.8670.02 0.8970.02

(1000, 500) Acc 0.7170.02 0.7770.01 0.7270.06 0.8170.04
þþþ NMI 0.6270.03 0.6970.04 0.5770.06 0.7870.06

ARI 0.6470.02 0.7370.04 0.6170.05 0.7970.06

(1000, 1000) Acc 0.9970.00 0.9970.00 0.9970.00 0.9970.00
þ NMI 0.9970.00 0.9970.00 0.9970.01 0.9970.00

ARI 0.9970.00 0.9970.00 0.9970.00 0.9970.00

(1000, 1000) Acc 0.9770.01 0.9770.02 0.9070.01 0.9370.02
þþ NMI 0.9470.01 0.9470.02 0.8770.03 0.9170.04

ARI 0.9670.01 0.9770.02 0.8970.03 0.9270.04

(1000, 1000) Acc 0.7470.03 0.8270.04 0.7470.03 0.8370.05
þþþ NMI 0.6970.02 0.7870.04 0.7070.03 0.7970.05

ARI 0.7370.02 0.7970.03 0.7270.04 0.8170.06

Fig. 7. Convergence of (a) DDKM and (b) F-DDKM on a continuous data set of size 1000!500 with a medium degree of overlap (þþ).
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form of the Rand Index is defined as

ARI¼

P
k;ℓ

nkℓ

2

( )
%
P

k
nk

2

( )P
ℓ

n̂ℓ

2

 !" #*
n
2

( )

1
2
P

k
nk

2

( )
þ
P

ℓ

n̂ℓ

2

 !" #

%
P

k
nk

2

( )P
ℓ

n̂ℓ

2

 !" #
n
2

( )
:

*

The values for these three metrics are between 0 and 1, a value
close to 1 means a good result in terms of clustering. These metrics
are expressed in percentage in the following sections.

5.3. Synthetic data sets and assessment of DDKM and F-DDKM

We use synthetic data in order to evaluate our methods DDKM
and F-DDKM. We simulate continuous and binary data sets by
varying size, degree of block overlap and assuming unequal pro-
portions of K¼3 co-clusters with ðπ1;π2;π3Þ ¼ ð0:2;0:3;0:5Þ and
ðρ1;ρ2;ρ3Þ ¼ ð0:2;0:3;0:5Þ. Regarding the size, we consider n! p¼
1000! 500 and 1000!1000. Fig. 6 shows data matrices with 500
features, 1000 objects, unequal proportions and three different
degrees of overlap that we obtain by varying the parameter θ.

For each data structure, we generate 100 samples and for each
sample we run the algorithms 100 times. In Table 4, the averages
and standard deviations of Acc's, NMI's and ARI's for each situation
are reported. To highlight significant differences in terms of per-
formance, results for which Student's t-test returns a p-value
lower than 0.05 are in bold. Fig. 7 shows the convergence of the
criterion for both algorithms.

On continuous data sets with a low degree of overlap (þ) both
algorithms perform equally well in terms of Acc's, NMI's and ARI's. On
data sets with a high degree of overlap (þþþ) F-DDKM outperforms

Fig. 8. Running time (in seconds) of algorithms on (a) binary and (b) continuous data sets of size 1000!1000 with a high degree of overlap (þþþ).

Table 5
Means of the number of iterations (7standard errors) computed on 100 simulated samples.

Size Degree of overlap Algorithms

Binary Continuous

DDKM F-DDKM DDKM F-DDKM

(1000, 500) þ 7.7872.45 8.2874.34 4.5970.79 6.7770.74
(1000, 500) þþ 16.4474.24 22.6879.84 8.4672.39 13.2673.94
(1000, 500) þþþ 27.1278.59 32.80710.81 14.1475.36 20.7715.41

(1000, 1000) þ 6.0471.03 6.3071.54 4.6271.78 6.8270.70
(1000, 1000) þþ 15.8874.68 20.4676.77 6.3271.17 13.4871.87
(1000, 1000) þþþ 19.5678.00 35.76715.57 14.5876.05 14.88713.16

Table 6
Description of the data sets in terms of size (n! p), number of clusters (K), sparsity
(%0) and degree of balance of the clusters.

Data sets n! p K %0 Balance

CSTR 475!1000 4 96.60 0.399
Classic3 3891!4303 3 98.95 0.71
Classic4 7095!5896 4 99.41 0.323
WebKB4 4199!1000 4 91.83 0.307
Reviews 4069!18 483 5 98.99 0.099
Sports 8580!14 870 7 99.04 0.036

Table 7
Description of the NG20 data set in term of size (n! p), number of clusters (K),
sparsity (%0), degree of balance of the clusters and subjects included.

Data sets n! p K %0 Balance Newsgroups included

NG2 500!2000 2 96.90 1 alt.atheism, comp.graphics
NG5 500!2000 5 97.19 1 comp.os.ms-windows, comp.

windows.x,
rec.motorcycles, sci.crypt,sci.
space

NG10 500!2000 10 96.44 1 comp.graphics, comp.sys.ibm.pc.
hardware,rec.autos
rec.sport.baseball, sci.crypt, sci.
med, talk.religion.misc
comp.windows.x, soc.religion.
christian, talk.politics.mideast
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DDKM but suffers from slow convergence (up to three times slower),
as illustrated in Fig. 8 and Table 5). It is worth noting that both algo-
rithms perform better as the number of features increases.

On binary data sets with low and medium degrees of overlap
both algorithms perform equally well. Regarding the performance
on data sets of increasing size, we observe the same behaviour
than on continuous data sets. The difference in terms of perfor-
mance between the two algorithms on data sets with a high
degree of overlap is less important than on continuous data sets.

On both types of data sets DDKM is faster than F-DDKM. It is
also more stable which is reflected by lower values of standard
deviation for the performance, the number of iterations and the
time required for convergence. Although F-DDKM requires more
time and more iterations to converge, the performances recorded
on on both continuous and binary data sets with a high degree of
overlap, make it more attractive.

6. Document-term partitioning

We study the effectiveness of our algorithms for some well-
known text data sets with different sizes and balances (the balance
coefficient is defined as the ratio of the number of documents in
the smallest class to the number of documents in the largest class).

6.1. Data sets

We compare the clustering performance of our algorithms
DDKM and F-DDKMwith state-of-the-art (co)-clustering algorithms
commonly used in the context of document-term clustering.
Hereafter, we give a detailed description of the data sets we use (see
also Tables 6 and 7).

Hereafter, we give a detailed description of chosen data sets.

' Classic4 consists of 4 different document collections: MED, CISI,
CRAN and CACM. We also use a subset of this data set (CISI,
CRAN and MED only) referred to as Classic3, in the sequel.
Terms which appear in less than 3 documents, or in more than
95% of the documents were removed. Moreover, Porters stem-
ming was applied as a pre-processing step.

' CSTR contains abstracts of technical reports published in the
department of Computer Science at a research university. These
abstracts were divided into four research areas: Natural Lan-
guage Processing (NLP), Robotics/Vision, Systems and Theory.

' WebKB consists of seven classes of web pages collected from
computer science departments: student, faculty, course, project,
department, staff and other. Frequently, only four classes are
used (student, faculty, course, project); this subset is called
WebKB4.

' Reviews and Sports are two document! term matrices from the
software CLUTO.2 They were derived from the San Jose Mercury
newspaper articles. Reviews contain documents on such topics
as food, movies, music, radio and restaurants; Sports contains
articles about baseball, basketball, bicycling, boxing, football,
golfing and hockey.

' 20 Newsgroups is a set of Usenet articles organized into 20
topics. We use two subsets of NG20 including both topics clo-
sely related or not related (Table 7).

The characteristics of all data sets used are presented in
Tables 6 and 7. Originally each cell of these data sets denotes the

Table 8
Accuracy, Normalized Mutual Information and Adjusted Rand Index (in %) obtained on binary data sets. (-) denotes that the algorithm cannot propose a partition with a
required number of co-clusters.

Data set Metric Algorithms

NMF K-means SpKM DKM SpCo ITCC Block DDKM F-DDKM

CSTR Acc 85.68 85.05 88.63 62.95 79.79 69.94 81.32 91.37 92.00
NMI 67.08 64.74 74.07 27.93 66.67 70.00 63.25 79.06 79.22
ARI 70.65 68.14 76.57 46.72 70.20 65.79 67.33 83.00 84.15

Classic3 Acc 97.66 90.47 97.33 94.17 70.60 98.46 84.21 98.20 98.36
NMI 88.78 73.81 91.41 80.90 59.64 92.32 54.36 91.31 91.72
ARI 93.06 75.34 94.38 82.82 40.20 95.42 58.77 94.61 95.12

Classic4 Acc 82.49 74.88 77.42 74.40 – 64.87 52.51 84.69 85.54
NMI 60.21 51.46 58.35 48.38 – 50.96 16.35 65.22 65.17
ARI 57.25 43.28 50.02 40.73 – 42.56 17.01 61.09 62.84

WebKB4 Acc 73.26 49.46 62.85 38.75 64.32 64.85 62.18 72.80 76.16
NMI 41.05 25.15 37.00 04.65 41.04 39.73 36.65 44.14 43.53
ARI 43.60 18.03 31.55 04.54 38.09 37.07 34.95 44.29 49.80

Reviews Acc 69.99 53.58 68.99 33.84 57.13 57.97 53.29 71.02 69.41
NMI 50.09 42.76 52.20 5.75 41.57 45.71 43.57 51.03 53.71
ARI 50.40 29.81 53.20 2.36 32.18 34.51 41.43 51.46 53.73

Sports Acc 56.97 41.81 60.26 30.56 55.73 44.73 47.08 76.69 72.11
NMI 51.47 33.21 58.85 5.49 47.18 49.16 38.13 61.39 60.09
ARI 36.94 13.67 43.79 2.18 34.45 18.67 19.62 64.18 58.56

NG2 Acc 60.60 57.60 60.80 54.60 90.20 90.80 72.01 94.60 95.40
NMI 12.85 12.93 13.09 2.38 55.35 56.57 20.35 70.55 73.57
ARI 4.41 2.26 4.58 0.77 64.57 66.52 20.55 79.53 82.41

NG5 Acc 50.10 33.07 52.10 29.66 60.32 54.31 53.21 76.75 84.87
NMI 32.25 16.61 28.31 8.15 50.75 36.74 34.15 51.49 63.80
ARI 20.68 4.08 24.84 2.82 37.31 31.45 29.96 51.37 65.84

NG10 Acc 47.90 39.08 43.29 40.08 48.90 46.49 42.68 44.08 50.30
NMI 47.36 30.41 39.72 37.26 51.87 41.45 41.21 31.00 39.60
ARI 24.46 19.47 23.52 21.15 32.07 30.25 32.14 20.59 24.80

2 http://www.cs.umn.edu/+cluto.
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number of occurrences of a term in a document. We conduct two
types of comparisons on document! term matrices. The first, on
the original data sets after applying a TF-IDF transformation. As
mentioned in Section 3, the fact that we use to set δ to the
maximum value of the data matrix, required a normalization of
the data. We use the TF-IDF weighting scheme implemented in
scikit-learn [44] which is defined as follows:

wij ¼ tf ij 1þ log
1þn
1þdj

( )( )
;

where wij is the weight of term i in document j, tfij is the frequency
of term i in document j, n is the total number of documents and dj
is the number of documents containing term j. In order to
eliminate the bias induced by the length of a document, the ℓ2

normalization is applied to the input matrices before launching
the co-clustering algorithm.

We also used a second version where the original data were
converted into binary, i.e., each cell having a value higher than 0 is
considered equal to 1 and 0 otherwise.

6.2. Compared algorithms

We compare our method to some state-of-the-art (co)-clus-
tering methods including Spherical K-means (SpKM) [45], Double
K-means (DKM), Spectral Co-Clustering (SpCo) [15], ITCC [24] and
Block [23]. We also report the clustering results obtained using K-
means and Nonnegative Matrix Factorization (NMF) [46] as base-
lines. The Spherical K-means algorithm is basically a K-means
algorithm that uses the cosine dissimilarity instead of the Eucli-
dean distance. It is known to be very efficient on sparse data and
to converge quickly. We use the matlab implementation for K-
means and NMF. For SpCo algorithm we use the implementation

proposed by Assaf Gottlieb.3 We use the SpKM implementation
given in [47]. For ITCC, we use the Matlab Toolbox for Biclustering
Analysis (MTBA) [48]. Finally, we implement Block and CROEUC
[3,39], a fast version of Double K-means (DKM) that consists in
working on intermediate reduced matrices.

6.3. Results

We set the number of clusters to the true number of classes for
all data sets. Because F-DDKM has two parameters to be tuned , we
run this algorithm under different parameter settings and select
the best result according to the criterion. We set α¼β and assess
F-DDKM according to different values of these parameters. We
discuss their possible choices in the next subsection. We run all
algorithms 100 times and report the best result, i.e., the one with
the minimum criterion value of all trials in Tables 8 and 9. We also
perform t-tests comparing the best state-of-the-art (co)-clustering
algorithm with the best of our algorithms for each data set and
report the results in Table 10. Several observations can be made
based on these results:

' On binary versions of data sets, F-DDKM significantly outper-
forms all other methods but is only slightly better than DDKM
for data sets with no overlapping clusters (CSTR, Classic3,
Classic4, WebKB4 and NG2). On NG5 and NG10, whose classes
are not well separated, the difference is all the more important.

' On TF-IDF versions of data sets, the same comment can be made
for NG5 and NG10. DDKM outperforms other methods on
Classic4 but give comparable results with ITCC on Classic3. On

Table 9
Accuracy, Normalized Mutual Information and Adjusted Rand Index (in %) obtained on TF-IDF data sets. (–) denotes that the algorithm cannot propose a partition with a
required number of co-clusters.

Data set Metric Algorithms

NMF K-means SpKM DKM SpCo ITCC DDKM F-DDKM

CSTR Acc 81.47 75.58 89.47 57.26 83.16 81.05 90.95 92.00
NMI 69.91 51.04 74.95 41.38 71.71 65.71 76.39 79.13
ARI 70.26 47.53 79.38 30.07 72.45 66.30 82.99 84.20

Classic3 Acc 96.32 96.83 97.83 96.02 97.87 98.79 98.79 98.12
NMI 84.53 92.22 91.83 85.67 91.49 93.95 94.24 90.56
ARI 89.04 93.59 94.18 88.67 93.89 96.42 96.83 94.47

Classic4 Acc 53.21 76.84 64.34 87.57 – 60.37 87.85 76.43
NMI 39.40 55.02 62.64 68.53 – 55.12 69.25 48.85
ARI 24.16 45.93 49.75 68.21 – 49.17 67.58 44.01

WebKB4 Acc 80.38 57.11 80.09 38.08 61.99 61.01 78.90 78.07
NMI 52.08 29.97 51.83 04.85 48.64 46.21 51.15 50.15
ARI 56.48 22.20 55.81 04.36 41.94 41.27 54.93 53.02

Reviews Acc 67.71 67.42 74.69 40.82 52.67 62.97 64.19 69.97
NMI 43.74 44.74 63.15 29.07 31.15 51.31 50.33 42.07
ARI 38.20 39.91 67.89 16.18 19.67 47.06 47.58 46.40

Sports Acc 55.28 48.72 73.37 47.88 55.18 54.11 71.45 62.79
NMI 35.71 43.22 66.61 31.59 36.13 58.12 56.81 40.93
ARI 33.95 22.51 66.49 17.83 26.18 39.61 56.85 49.31

NG2 Acc 88.40 - 76.18 69.60 88.98 90.35 91.80 94.20
NMI 23.04 - 30.48 19.15 53.16 54.61 59.33 68.17
ARI 29.89 - 34.23 15.24 60.69 62.36 69.83 78.10

NG5 Acc 44.49 44.98 79.96 44.29 53.91 53.69 55.71 87.17
NMI 24.52 24.53 54.76 17.87 45.59 55.86 26.46 68.17
ARI 20.49 17.52 56.06 12.16 30.03 30.09 23.98 70.43

NG10 Acc 42.89 31.86 43.69 42.89 47.09 48.08 42.08 64.13
NMI 41.97 24.55 35.55 33.56 49.33 49.60 33.19 53.30
ARI 19.08 14.20 26.64 22.33 27.63 31.90 24.84 43.10

3 http://adios.tau.ac.il/.
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WebKB4, NMF and SpKM give better clustering results than
both proposed algorithms.

' On binary version of Reviews and Sports, which are data sets
with a low balance coefficient, both proposed algorithms are
the most efficient, whereas on the TF-IDF version of these same
data sets, SpKM is significantly better.

' On the TF-IDF version of NG2, K-means is unable to find a
partition into two clusters as required whereas on the TF-IDF
version of Classic4, SpCo is unable to propose a partition into
4 clusters. Fig. 9

' summarizes Tables 8 and 9, we observe that whatever the type
of data is (binary or continuous after TF-IDF transformation),
our two algorithms DDKM and F-DDKM (the last two bars) are
almost always better than the others. However, one can note
that, except for SpKM, the TF-IDF transformation does not
always improve the performance of the algorithms we have
studied. For instance, if the TF-IDF transformation on NG10
significantly improved the accuracy of F-DDKM, it has a less
significant impact on Sports.
Although both algorithms are more efficient on document data

sets than other state-of-the-art algorithms, it is important to note
that F-DDKM relies on two unknown parameters. The next sub-
section is devoted to the analysis of the possible parameters
configuration.

6.4. Choice of α and β

One shortcoming of F-DDKM is that the user has to specify the
fuzziness parameters α and β. The analysis of empirical results
give us a hint on how we can set these values. Fig. 10 presents

different situations we ran into while doing the experiments on
real data sets. Each figure shows the variations of the accuracy, the
NMI and the ARI according to different values of α and β. As α and
β control the fuzziness of the partition, we can expect to find
optimum for higher value of these parameters on data sets with
overlapping rather than with well separated co-clusters.

For all four data sets we can see that the optimal choice of α
and β is between 1.001 and 1.003. CSTR is a data set with no
overlap, therefore values of α and β lower than 1.001 can also be
considered as good choices. On NG5 and NG10, accuracies, NMI's
and ARI's dropped significantly for values of the parameters
greater than 1.003 and 1.005, respectively. The same phenomenon
occurs on CSTR for values of parameters greater than 1.005. For
Webkb4 (Fig. 10) we can observe several peaks including 1.002. In
the latter case, it is worth noting that no real drop happens so that,
other values like 1.008 and 1.00001 can also be considered as an
option. Based on these empirical observations we recommend to
set the value of α and β between 1.001 and 1.003.

6.5. Computational complexity

We study the computational complexity of the compared
clustering and co-clustering algorithms. DDKM and F-DDKM have
the same complexity but fuzzy approaches are known to require
more computation time than hard ones. We repeat clustering 100
times for each algorithm on each data set. For illustration, we
report the average convergence time on CSTR, Classic3, NG5 and
NG10 in Fig. 11. We have deliberately chosen not to report running
time performance obtained with ITCC ‐ as in our opinion the
matlab implementation that we used is not optimized.

Table 10
T-Test results comparing the best state-of-the-art (co-) clustering algorithms with the best of our algorithms. For instance, on the binary version of CSTR, we compare SpKM
with F-DDKM while on the TF-IDF version of Classic4 we compare DKM with DDKM. Boldface type indicates a significant difference (p-value below the 0.05 threshold).

Data set Metric Binary TF-IDF

Best (F)-DDKM Best (F)-DDKM

CSTR Acc 80.6475.19 90.2370.72n 86.7472.88 87.7471.64n

NMI 72.0473.11 76.4071.24n 70.1672.76 72.2572.77n

ARI 69.6574.15 81.3671.02n 73.3373.82 76.0873.26n

Classic3 Acc 98.2770.00 98.1170.00 98.7970.00 98.7970.00
NMI 91.6470.21 90.8170.22 93.2570.11 93.6970.19
ARI 95.0270.18 94.3670.15 96.1270.25 96.4770.12

Classic4 Acc 80.9174.81 82.0772.29 85.4672.35 87.7770.37
NMI 58.2475.09 61.8372.02n 65.0974.01 68.8070.52
ARI 56.0675.84 59.3874.24n 63.6675.20 68.6370.84

WebKB4 Acc 69.0271.86 70.0172.35n 79.7670.21n 76.6570.92
NMI 36.8371.57 38.0672.78n 51.1870.44n 48.6970.88
ARI 38.1072.55 39.4973.14n 55.2870.44n 50.5771.46

Reviews Acc 66.2271.94 67.0372.64n 72.5772.14n 62.8370.62
NMI 49.0470.55 49.6571.24 59.5574.84n 49.3371.07
ARI 47.8171.54 48.8772.64n 61.7476.64n 44.3071.59

Sports Acc 55.8674.07 72.8075.21n 55.8377.03 62.8775.18
NMI 53.4272.65 58.3971.96n 55.7876.06 51.1673.08
ARI 41.2471.54 62.8673.20n 40.4279.59 49.4975.69

NG2 Acc 89.5470.08 92.3770.98n 89.5870.11 94.0170.00n

NMI 55.8170.12 66.1873.06n 55.3970.14 67.4670.19n

ARI 65.1970.13 74.8073.31n 65.6770.18 77.4470.18n

NG5 Acc 58.3672.34 76.1576.72n 68.8675.93 84.8070.89n

NMI 46.3372.91 52.7777.77n 43.4074.99 63.7871.73n

ARI 33.0373.59 52.06710.16n 41.3176.47 65.5871.78n

NG10 Acc 47.0172.44 47.9073.61 47.0370.24 61.3572.14n

NMI 49.3573.54n 37.7371.81 48.3370.45 51.2471.74n

ARI 30.1872.37n 24.5070.98 30.6770.15 39.7572.84n

n Numbers marked indicate that the p-value is below 0.001.
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It is also important to stress that NMF, K-means and SpKM are
only working on the set of objects while other algorithms are
working on both sets of objects and features. The results show that
the proposed algorithm DDKM is only slightly slower than NMF
method while it requires far less time to converge than all other
state-of-the-art algorithms. The fact that our algorithms do not
require to look for an appropriate δ nor update δ during the co-
clustering process, explain the speed of the proposed approach. On
TF-IDF versions data sets, F-DDKM needs more time to converge
than on binary ones and is always faster than SpCo. The same
observations can be made for other data sets presented in this
article.

7. Limitations

In our approach, we assume that there exists a block diagonal
structure and that the values of X are comparable. Although this
assumption is often true for many applications like document
clustering or social networks, it can become a weakness when the
diagonal structure is less evident, as it is the case of Reviews (see
Fig. 12) or when there are outliers.

Indeed, since the proposed criteria are based on the maximum
value of the data matrix, the presence of objects with abnormally
high value(s) for one or more features will have an impact on the
performance of our algorithms. In order to illustrate this point, we

Fig. 9. Comparison of all algorithms in terms of Acc on binary and continuous data sets.
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Fig. 10. Impact of α and β on the performance of F-DDKM on the binary (top row) and TF-IDF versions (bottom row) of data sets.

Fig. 11. Running time (in seconds) of algorithms on binary and TF-IDF versions of data sets.
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simulate a continuous data set of size 200!100 with a very clear
diagonal structure composed of 3 blocks. We use the process
described in the Section 5.1 with the parameters reported in
Table 11.

We apply a standard normalisation to the data; we subtract the
mean from each feature and divided this difference by the stan-
dard deviation of the feature. We run both DDKM and F-DDKM on
this data set and obtain accuracy close to 100% for both of them.
Then, we introduce 5 outliers; we generate these outliers uni-
formly at random from the interval ½0;20*d. After the same stan-
dardization process than for the original data set, we run both
algorithms and they both fail gathering all the objects into one
single block. A simple and classic way to overcome this limitation
is to visualise the data carefully before running the algorithms. For
instance, the boxplots of features or the Principal Component
Analysis (PCA) (see Fig. 13) can be used to identify the outliers and
possibly to exclude them from the analysis.

Finally, both algorithms require an appropriate normalization
such as binarization or TF-IDF to work efficiently. The choice of δ
as the maximum value appears a good choice in document

clustering context. However, a proper statistical analysis of the
data upstream can allow a more suitable choice of δ and to
properly handle the presence of outliers.

8. Conclusion

In this paper we presented DDKM, a fast co-clustering algo-
rithm that looks for homogeneous diagonal blocks and F-DDKM,
its fuzzy version. Compared with other methods, we demonstrated
that our proposed algorithms are more effective for document-
term partitioning (both on binary data and with TF-IDF transfor-
mation) and especially in the presence of classes having a high
degree of overlap. In addition, DDKM requires less time to con-
verge; up to 20 times less time than DKM and 40 times less time
than SpCo commonly used in the domain of document clustering.

For further research, it will be worthwhile to investigate an
efficient theoretical way to choose the values of the parameters α
and β and to study in more detail their impact on the clustering
performance.

Finally, in real world application, the knowledge of the number
of co-clusters is mostly required. Another initiative will be to
investigate an efficient way to assess this parameter.
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