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Histopathological images



An example: the kidney
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Histological slide

Biopsy

Stained biological slide

Scanned Whole Slide Image

• Many slides are consecutively cut from a piece of tissue
• A di�erent staining is applied on each to highlight di�erent
types of cells or structures

• Very high resolution image (1 pixel = 0.25µm)
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Histological slide

cut

Microscope observation after staining
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Histological slide

Example of consecutive slides
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Machine learning and histopathology

Challenges

• Huge need of labeled data
• Size of the images
• High heterogeneity due to tissue preparation
• Clusters of objects of interest
• Cost of digitisation (�nancial and time)
• Explicability
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Challenges

Supervised approaches need huge amount of labeled data

• very time consuming to have high quality annotations

• privacy protection: medical data are sensitive and cannot be
exchanged easily

• scanners are very expansive
• unbalanced classes: for many tasks (mitosis detection for
example) negative labels (no mitosis) are much more frequent
than positive labels (mitosis)
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Challenges

Data volume

• very large and high resolution images (e.g. 100,000× 100,000
pixels) that cannot be used entirely in memory

• resolution reduction (loss of details)
• work on extract or patches (loss of context)
• tasks executed in parallel (GPU)

Heterogenity and noise due tissue preparation

• lots of noise in the images
• a model trained on images acquired from one center is not
e�cient on images from another center
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Machine learning for image
analysis



Images as data

Images are spatial multivalued data

• each pixel is a set of spectral values

(120, 50, 146)

1 >>> img=skimage.io.imread(’test.png’)
2 >>> print(img.shape)
3 (460, 700, 3)
4 >>> print(img[0, 0])
5 [120, 50, 146]
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Images as data

Machine learning algorithms can work on

• each pixel as an element described by its values

but...

• spatial information is lost
• cannot be used to classify images (need to have a description
for each image)

• spectral information is only a piece of information contained in
an image

and...

• contrary to other data such as temperature or speed, raw pixel
values have no semantic meaning

11/19



Machine learning for image analysis

Main applications

• Classi�cation of images (or part of images)
• Objects detection
• Segmentation
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Image classi�cation

Classi�cation
Given a set of images and a set of labels, give the corresponding
label to each image

Example: Breast cancer positive or negative images

source: The Kaggle Breast Histopathology Images dataset by Janowczyk et al.
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Image classi�cation

How to apply ML to images for classi�cation?

• calculate features describing each image
• classify the images according to these new features

but...

• It’s not trivial to
• choose the features adapted to a speci�c problem
• create new handcrafted features

• and features often need parameters
• how to �x them?
• parameters can have a great impact on e�ciency
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Example - Patches classi�cation using standard descriptors

source: Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early
stage ER+ breast cancer, Whitney et al.
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Objects detection

Detection
Given an image and examples of objects of interest, locate all
instances of similar objects

Example: cell nuclei detection

source: Cell Nuclei Detection on Whole-Slide Histopathology Images Using HistomicsTK and Faster
R-CNN Deep Learning Models, Chandradevan et al.
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Segmentation and classi�cation

Segmentation
Given an image, examples of objects of interest and class
terminology, locate and delineate all instances of objects and
associate them to their class

source: Automatic segmentation of histopathological slides of renal tissue using deep learning,
de Bel et al.
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Conclusion

All classical image analysis method can be used on digitized
histopathological images to perform many useful tasks for the
pathologists. But a lot of problems have to be solved as:
volume, noise, inter-center heterogenity, cluster of objects of
interest, availability of annotations and data, explainability, etc.
Digital histopathology

• emerging domain but still a lot of work to achieve
• huge predominance of deep learning

source: Weakly Supervised Learning for Whole Slide Lung Cancer Image Classi�cation, Xi Wang
18/19



Hands-on



Hands-on

Patches classi�cation extracted from breast tumor dataset

Binary classi�cation

• Data loading and preparation
• Data visualisation and preprocessing
• Image features extraction
• SVM binary classi�cation (and other methods)
• Model evaluation (accuracy, cross-validation)
• Hyperparameters estimation (grid search)

Multi-class classi�cation

• Multi-layer Perceptron classi�cation
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This is it!

Let’s get your hands dirty �
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