

Hands-on Workshop on Machine Learning Applied to Medical Imaging

Machine learning for histopathological images analysis

Germain Forestier[†], Jonathan Weber[†], Cédric Wemmert^{*}

[†]IRIMAS Mulhouse, *ICube Strasbourg

- 1. Histopathological images
- 2. Machine learning for image analysis
- 3. Hands-on

Histopathological images

An example: the kidney

Histological slide

Stained biological slide

- Many slides are consecutively cut from a piece of tissue
- A different staining is applied on each to highlight different types of cells or structures
- Very high resolution image (1 pixel = 0.25μ m)

Histological slide

Microscope observation after staining

Example of consecutive slides

Machine learning and histopathology

Challenges

- Huge need of labeled data
- Size of the images
- High heterogeneity due to tissue preparation
- Clusters of objects of interest
- Cost of digitisation (financial and time)
- Explicability

Challenges

Supervised approaches need huge amount of labeled data

• very time consuming to have high quality annotations

Supervised approaches need huge amount of labeled data

- very time consuming to have high quality annotations
- privacy protection: medical data are sensitive and cannot be exchanged easily
- scanners are very expansive
- unbalanced classes: for many tasks (mitosis detection for example) negative labels (*no mitosis*) are much more frequent than positive labels (*mitosis*)

Challenges

Data volume

- very large and high resolution images (e.g. 100,000 \times 100,000 pixels) that cannot be used entirely in memory
- resolution reduction (loss of details)
- work on extract or patches (loss of context)
- tasks executed in parallel (GPU)

Heterogenity and noise due tissue preparation

- lots of noise in the images
- a model trained on images acquired from one center is not efficient on images from another center

Machine learning for image analysis

Images are spatial multivalued data

• each pixel is a set of spectral values


```
1 >>> img=skimage.io.imread('test.png')
2 >>> print(img.shape)
3 (460, 700, 3)
4 >>> print(img[0, 0])
5 [120, 50, 146]
```

Images as data

Machine learning algorithms can work on

• each pixel as an element described by its values

but...

- spatial information is lost
- cannot be used to classify images (need to have a description for each image)
- spectral information is only a piece of information contained in an image

and...

• contrary to other data such as temperature or speed, raw pixel values have no semantic meaning

Main applications

- Classification of images (or part of images)
- Objects detection
- Segmentation

Classification

Given a set of images and a set of labels, give the corresponding label to each image

Example: Breast cancer positive or negative images

Positive

Negative

source: The Kaaale Breast Histopatholoav Images dataset by Janowczyk et al.

How to apply ML to images for classification?

- calculate features describing each image
- classify the images according to these new features

but...

- It's not trivial to
 - · choose the features adapted to a specific problem
 - create new handcrafted features
- and features often need parameters
 - how to fix them?
 - parameters can have a great impact on efficiency

Example - Patches classification using standard descriptors

source: Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+ breast cancer, Whitney et al.

Objects detection

Detection

Given an image and examples of objects of interest, locate all instances of similar objects

Example: cell nuclei detection

source: Cell Nuclei Detection on Whole-Slide Histopathology Images Using HistomicsTK and Faster R-CNN Deep Learning Models, Chandradevan et al.

Segmentation

Given an image, examples of objects of interest and class terminology, locate **and delineate** all instances of objects and associate them to their class

source: Automatic segmentation of histopathological slides of renal tissue using deep learning, de Bel et al.

Conclusion

All classical image analysis method can be used on digitized histopathological images to perform many useful tasks for the pathologists. **But** a lot of problems have to be solved as: volume, noise, inter-center heterogenity, cluster of objects of interest, availability of annotations and data, explainability, etc.

Digital histopathology

- emerging domain but still a lot of work to achieve
- huge predominance of deep learning

source: Weakly Supervised Learning for Whole Slide Lung Cancer Image Classification, Xi Wang

Hands-on

Hands-on

Patches classification extracted from breast tumor dataset

Binary classification

- Data loading and preparation
- Data visualisation and preprocessing
- Image features extraction
- SVM binary classification (and other methods)
- Model evaluation (accuracy, cross-validation)
- Hyperparameters estimation (grid search)

Multi-class classification

Multi-layer Perceptron classification

This is it! Let's get your hands dirty 🙂