

www.aramislab.fr ninonburgos.com

10th March 2020

Deep Learning for Neurolmaging

Ninon Burgos, CNRS Researcher Aramis Lab, Paris, France

Computer-aided neuro(radio)logy

Computer-aided neuro(radio)logy

Image reconstruction

Positron emission tomography (PET)

PET data detection

PET image reconstruction

DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem

Batch normalisation

- To improve the speed, performance, and stability of networks
- Batch normalisation layer:

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ, β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

 $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \qquad // \text{ mini-batch mean}$ $\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} \qquad // \text{ mini-batch variance}$ $\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \qquad // \text{ normalize}$ $y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv BN_{\gamma,\beta}(x_{i}) \qquad // \text{ scale and shift}$

loffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015

DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem

Image reconstruction

DATA GENERATION

DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem

• Results on simulated data

DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem

• Results on real data

Sinogram	Maximum-likelihood reconstruction	DeepPET reconstruction	
			-24 -18 -12 -12 -6 -0

Computer-aided neuro(radio)logy

Attenuation correction for PET/MR scanners

PET with

Solution

▷ Synthesise CT from MR images

MR-based synthetic CT generation using a deep CNN method

Han, Medical Physics, 2017

Medical Image Synthesis with Context-Aware GANs

Unpaired data

Deep MR to CT Synthesis using Unpaired Data

Paired data

MR CT

Wolterink et al., SASHIMI, 2017

Methodological parenthesis

Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017

Methodological parenthesis

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017

Deep MR to CT Synthesis using Unpaired Data

Wolterink et al., SASHIMI, 2017

Deep MR to CT Synthesis using Unpaired Data

Wolterink et al., SASHIMI, 2017

Magnetic resonance imaging (MRI)

Noise-free MRI

Noisy MRI

Ran et al., Medical Image Analysis, 2019

Image denoising

ARAMIS LAB BRAIN DATA SCIENCE 22

Denoising of 3D MRI using a residual encoder-decoder Wasserstein GAN

Overall architecture

Conv3D BatchNorm3D DeConv3D LeakyReLU Fincoder Fincode

Ran et al., Medical Image Analysis, 2019

Generator

Image denoising

Denoising of 3D MRI using a residual encoder-decoder Wasserstein GAN

Noise-free MRI

Noisy MRI

Denoised MRI

Ran et al., Medical Image Analysis, 2019

Image denoising

Denoising of 3D MRI using a residual encoder-decoder Wasserstein GAN

Denoised MRI

Ran et al., Medical Image Analysis, 2019

2D MRI

Zhao et al., Magnetic Resonance Imaging, 2019

Self super-resolution for MRI

Zhao et al., Magnetic Resonance Imaging, 2019

Self super-resolution for MRI

Quantitative results

Dice score (overlap between manual and automatic segmentations)

Thickness	Interpolation	SMORE	HR (0.9 mm)
1.205 mm	0.969	0.9696	0.9699
1.928 mm	0.9665	0.9690	
3.0125 mm	0.9602	0.9675	
3.856 mm	0.9524	0.9632	
4.82 mm	0.9408	0.9607	

Computer-aided neuro(radio)logy

Level of diagnostic support

U-Net: Convolutional Networks for Biomedical Image Segmentation

Results on the ISBI cell tracking challenge

Segmentation results (IOU "intersection over union")

Name	PhC-U373	DIC-HeLa
IMCB-SG (2014)	0.2669	0.2935
KTH-SE (2014)	0.7953	0.4607
HOUS-US (2014)	0.5323	-
second-best 2015	0.83	0.46
u-net (2015)	0.9203	0.7756

Ronneberger et al., MICCAI, 2015 (12076 citations on 05/03/2020)

Medical Segmentation Decathlon

Simpson et al., arXiv:1902.09063, 2019

And the winner is:

nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation

"We consider a pool of basic U-Net architectures consisting of a 2D U-Net, a 3D U-Net and a U-Net Cascade."

Isensee et al., arXiv:1809.10486, 2018

Computer-aided neuro(radio)logy

Deep autoencoding models for unsupervised anomaly segmentation in brain MR images

Autoencoder

Variational autoencoder (VAE)

Deep autoencoding models for unsupervised anomaly segmentation in brain MR images

VAE-GAN for anomaly segmentation

Deep autoencoding models for unsupervised anomaly segmentation in brain MR images

True Positives False Positives False Negatives

Baur et al., MICCAI Brainlesion Workshop, 2019

Computer-aided neuro(radio)logy

What is dementia?

- Disorders caused by abnormal brain changes
- Trigger decline in cognitive abilities, severe enough to impair daily life
- Affect behaviour, feelings and relationships
- Progressive

Common types of dementia

38

- Alzheimer's disease: 60 to 80% of dementia cases
- Vascular dementia
- Lewy body dementia
- Frontotemporal dementia
- Posterior cortical atrophy
- Primary progressive aphasia

Current diagnosis of dementia

- Clinical consultation
 - $\circ~$ Questions about the person's concerns, symptoms, general health and medical history
 - Discussion with a relative about the person' symptoms
 - Physical check-up
 - Completion of some pen-and-paper tests to check memory, language and problem-solving skills
- Other possible tests
 - \circ Brain scans
 - Blood tests
 - \circ Lumbar puncture

Parenthesis on Alzheimer's disease

Imaging in Alzheimer's disease

- Magnetic resonance imaging
 - Structural MRI
 - Atrophy
 - Diffusion MRI
 - White matter integrity
- Positron emission tomography
 - FDG PET ('glucose' PET)
 - Hypometabolism
 - Amyloid & tau PET
 - Accumulation of amyloid-ß and tau proteins

Alzheimer's

disease

FDG PET

PET

Imaging in Alzheimer's disease

Disease progression

Machine learning for the diagnosis and prognosis of AD

- 'Diagnostic' classification task
 - Differentiate cognitively normal (CN) subjects from patients with AD: CN vs AD
 - Not clinically relevant but useful when developing algorithms
- 'Predictive' classification task
 - Different patients with mild cognitive impairment (MCI) that will stay stable (sMCI) from the ones that will progress to AD dementia (pMCI): sMCI vs pMCI
 - Clinically relevant but more difficult

Computer-aided neuro(radio)logy

Level of diagnostic support

Residual and plain convolutional neural networks for 3D brain MRI classification

VoxCNN:

Korolev et al., ISBI, 2017

Residual learning

Degradation problem: with the network depth increasing, accuracy gets saturated and then degrades rapidly

Residual = Output - Input

 $\mathcal{F}(\mathbf{x}) = \mathcal{H}(\mathbf{x}) - \mathbf{x}$

 $\mathcal{H}(\mathbf{x}) = \mathcal{F}(\mathbf{x}) + \mathbf{x}$

He et al., Deep Residual Learning for Image Recognition, 2015

Residual and plain convolutional neural networks for 3D brain MRI classification

VoxCNN:

Korolev et al., ISBI, 2017

Residual and plain convolutional neural networks for 3D brain MRI classification

	Vox	CNN	ResNet		
	AUC	Acc.	AUC	Acc.	
AD vs NC	$.88 \pm .08$	$.79 \pm .08$	$.87 \pm .07$	$.80 \pm .07$	
AD vs EMCI	$.66 \pm .11$	$.64 \pm .07$	$.67 \pm .13$	$.63 \pm .09$	
AD vs LMCI	$.61 \pm .12$	$.62 \pm .08$	$.62 \pm .15$	$.59 \pm .11$	
LMCI vs NC	$.67 \pm .13$	$.63 \pm .10$	$.65 \pm .11$	$.61 \pm .10$	
LMCI vs EMCI	$.47 \pm .09$	$.56 \pm .11$	$.52 \pm .11$	$.52 \pm .09$	
EMCI vs NC	$.57 \pm .12$	$.54 \pm .09$	$.58 \pm .09$	$.56 \pm .07$	

"Both networks show similar results within a standard deviation."

Korolev et al., ISBI, 2017

CNNs for Classification of Alzheimer's Disease: Overview and Reproducible Evaluation

CNNs for Classification of Alzheimer's Disease: Overview and Reproducible Evaluation

CNNs for Classification of Alzheimer's Disease: Overview and Reproducible Evaluation

3 categories identified:

1. Biased split

Data extracted from the same original is distributed in both the train and test sets

2. Late split

Test / train split is performed after another procedure (feature selection, pretraining, etc.)

3. No independent test set Performance is evaluated on the train and / or validation sets

CNNs for Classification of Alzheimer's Disease: Overview and Reproducible Evaluation

Study	Performance					Approach	Data leakare	Number of
Study	AD vs CN	sMCI vs pMCI	MCI vs CN	AD vs MCI	Multi-class	Арргоасн	Dala leakage	citations
(Aderghal et al., 2017b)	ACC=0.84		ACC=0.65	ACC=0.67†		ROI-based	None detected	16
(Aderghal et al., 2018)	BA=0.90		BA=0.73	BA=0.83		ROI-based	None detected	9
(Bäckström et al., 2018) *	ACC=0.90					3D subject-level	None detected	20
(Cheng et al., 2017)	ACC=0.87					3D patch-level	None detected	12
(Cheng and Liu, 2017)	ACC=0.85					3D subject-level	None detected	8
(Islam and Zhang, 2018)							the detected	23
(Korolev et al. Average ACC (AD vs CN) :							72	
(Li et al.,	(Li et al., 2018)							12
(Li et al., 2018)							7	
(Lian et al., 2018)	ACC=0.90					tevel	None detected	30
(Mingxia Liu et al., 2018a)	ACC=0.91	ACC=0.78†				3D patch-level	None detected	59
(Mingxia Liu et al., 2018c)	ACC=0.91					3D patch-level	None detected	26
(Qiu et al., 2018)		ACC=0.83†				2D slice-level	None detected	8
(Senanayake et al., 2018)	ACC=0.76		ACC=0.75	ACC=0.76		3D subject-level	None detected	3
(Shmulev et al., 2018)		ACC=0.62				3D subject-level	None detected	5
(Valliani and Soni, 2017)	ACC=0.81				ACC=0.57 ²	2D slice-level	None detected	8

Ctudy		Perform	nance			Approach Di	Data leakage	Number of
Study	AD vs CN	sMCI vs pMCI	MCI vs CN	AD vs MCI	Multi-class	Арргоасн	(type)	citations
(Aderghal et al., 2017a)	ACC=0.91		ACC=0.66	ACC=0.70		ROI-based	Unclear (b,c)	13
(Basaia et al., 2019)	BA=0.99	BA=0.75				3D subject-level	Unclear (b)	25
(Hon and Khan, 2017)	ACC=0.96					2D slice-level	Unclear (a,c)	32
(Hosseini Asl et al., 2018)	ACC=0.99		ACC=0.94	ACC=1.00	ACC=0.95 ²	3D subject-level	Unclear (a)	107
(Islam and Zhang, 2017)					ACC=0.74 ¹ †	2D slice-level	Unclear (b,c)	23
(Lin et al., 2018) Unclear (b)								
(Manhua Liu er Average ACC (AD vs CN) :								39
							16	
(Vu et al., 2017)								20
(SH. Wang et al., 2018)	ACC=0.98					suce-level	Unclear (b)	49
(Bäckström et al., 2018)*	ACC=0.99					3D subject-level	Clear (a)	20
(Farooq et al., 2017)					ACC=0.99 ³ †	2D slice-level	Clear (a,c)	31
(Gunawardena et al., 2017)					ACC=0.96 ²	3D subject-level	Clear (a,b)	8
(Vu et al., 2018)	ACC=0.86		ACC=0.86	ACC=0.77	ACC=0.80 ²	3D subject-level	Clear (a,c)	8
(Wang et al., 2017)			ACC=0.91			2D slice-level	Clear (a,c)	11
(Wang et al., 2019)	ACC=0.99		ACC=0.98	ACC=0.94	ACC=0.97 ²	3D subject-level	Clear (b)	17

Computer-aided neuro(radio)logy

Degenerative Adversarial NeuroImage Nets: Generating Images that Mimic Disease Progression

Ravi et al., MICCAI, 2019

Degenerative Adversarial NeuroImage Nets: Generating Images that Mimic Disease Progression

Degenerative Adversarial NeuroImage Nets: Generating Images that Mimic Disease Progression

Neurodegeneration simulation of a 69-year old ADNI participant

Ravi et al., MICCAI, 2019

Computer-aided neuro(radio)logy

Level of diagnostic support