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Positron emission tomography (PET)
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counts in the projection sinogram corresponding to the calculated r are added to the (x, y) 
pixel in the reconstruction matrix. This is repeated for all projection angles (Figure 1). 

 

Figure 1. Schematic diagram of PET. Two gamma rays emitted as a result of positron annihilation are detected  
by two detectors. 

The lines connecting the detectors (left side of the Figure)  is described by coordinates (r, I) and represented on 
sinogram (right side). 

 

It is possible to reconstruct a whole 3D volumetric object by repeating the 2-D data 
acquisition for multiple axial (in z direction) slices, although procedure is tedious  When the 
sinogram for each value of z is reconstructed, one can stack the image planes together one 
after the other  to form a three-dimensional image. Although this can be considered as form of 
three-dimensional imaging, it is different from the three-dimensional acquisition model 
described in the next section. There is a handful of effective 2D iterative procedures for 
imaging [5]. 

 

Three-dimensional imaging 
Fully 3-D measurements require more storage of data. As a result, reconstruction becomes 
more computationally intensive. The solution is to use iterative methods such as MLEM 
(maximum likelihood expectation-maximization).  

The diagram in Figure 2 shows the basic procedure for using an iterative algorithm. 
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counts in the projection sinogram corresponding to the calculated r are added to the (x, y) 
pixel in the reconstruction matrix. This is repeated for all projection angles (Figure 1). 
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sinogram (right side). 

 

It is possible to reconstruct a whole 3D volumetric object by repeating the 2-D data 
acquisition for multiple axial (in z direction) slices, although procedure is tedious  When the 
sinogram for each value of z is reconstructed, one can stack the image planes together one 
after the other  to form a three-dimensional image. Although this can be considered as form of 
three-dimensional imaging, it is different from the three-dimensional acquisition model 
described in the next section. There is a handful of effective 2D iterative procedures for 
imaging [5]. 

 

Three-dimensional imaging 
Fully 3-D measurements require more storage of data. As a result, reconstruction becomes 
more computationally intensive. The solution is to use iterative methods such as MLEM 
(maximum likelihood expectation-maximization).  

The diagram in Figure 2 shows the basic procedure for using an iterative algorithm. 
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DeepPET: A deep encoder–decoder network for directly

solving the PET image reconstruction inverse problem

Häggström et al., Medical Image Analysis, 2019
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Batch normalisation

• To improve the speed, performance, and stability of networks

• Batch normalisation layer:

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

Ioffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015
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DeepPET: A deep encoder–decoder network for directly

solving the PET image reconstruction inverse problem

Häggström et al., Medical Image Analysis, 2019

Convolutional encoder-decoder networkSinogram Reconstructed image
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Häggström et al., Medical Image Analysis, 2019

I. Häggström, C.R. Schmidtlein and G. Campanella et al. / Medical Image Analysis 54 (2019) 253–262 255 

Fig. 1. Schematic illustration of the reconstruction pipeline and the DeepPET convolutional encoder–decoder architecture. The data generation process is depicted on top. 
It includes the generation of 2D humanoid phantom images, followed by simulation of realistic PET scans with PETSTEP, resulting in multiple sinogram datasets at differ- 
ent noise levels. Experimental setup of the network training procedure is shown on the bottom, where the sinogram data is first precorrected for scatters, randoms and 
attenuation, and cropped before being inputted to DeepPET. Details of the DeepPET architecture is shown on the bottom middle. 
where µi is the attenuation in the i th coincidence count. Precor- 
recting the data mixes its statistical properties and, as a result, is 
generally avoided in the inverse problem formulation due to its ex- 
plicit use of a particular statistical model (Poisson in the case of 
PET). For this study however, the solution is not explicitly depen- 
dent on any a priori data noise model making precorrection ap- 
plicable. Alternatively, additional network inputs (attenuation map 
and scatter+randoms estimate) could be used. However, using pre- 
corrected data instead decreases the network size, and thus mem- 
ory usage and computation time, as well as reduces the risk of 
overfitting. 
2.2. Dataset generation 

The major bottleneck in many deep learning experiments is the 
limited size of available datasets and lack of labeled data. This 
problem was circumvented by generating labeled data syntheti- 
cally. The open-source PET simulation software PET Simulator of 
Tracers via Emission Projection (PETSTEP) ( Berthon et al., 2015; 
Häggström et al., 2016 ), which was implemented in MATLAB ®
( www.matlab.com ), and was here used to simulate PET scans and 
generate realistic PET data. PETSTEP has previously been validated 
by the Geant4 Application for Tomographic Emission (GATE) Monte 
Carlo (MC) software ( Jan et al., 2004 ). It includes the effects of 
scattered and random coincidences, photon attenuation, Poisson 
counting noise, and image system blurring. For this study, a GE 
D710/690 PET/CT scanner was modeled, with sinogram data of 288 
angular × 381 radial bins. This approach is more realistic than only 
adding Poisson noise to sinogram data, and thus should better en- 
able transferability of the trained network to clinical data. 

In this study, the deformable humanoid XCAT digital phan- 
tom was used to produce random, patient realistic whole-body 
three-dimensional (3D) phantoms with 280 slices of transaxial size 
128 × 128 pixels over a 700 mm field of view FOV) ( Segars et al., 
2010 ). The generation of one 3D XCAT phantom uses several hun- 

dreds of user adjustable parameters regarding the geometry, posi- 
tion ( e.g ., 3D rotations and translations), patient and organ shape 
and size, gender, arms up or down, as well as tracer activity 
of each organ and tissue. Here, these parameters were random- 
ized within realistic ranges to generate a diverse population of 
350 patients, making a total of 350 · 280 = 98,0 0 0 unique two- 
dimensional (2D) activity images (with associated attenuation µ- 
maps). Data augmentation was achieved by generating three real- 
izations of each 2D phantom image by randomly right/left flipping, 
translating ( ± 30 pixels in x and y -dir), and rotating ( ± 10 ◦) the 
images. Pixels outside a 700 mm circular FOV were set to zero. 
PET acquisitions of these phantom images were then simulated us- 
ing PETSTEP, where the activity (noise) level of each image slice 
was randomized, and the random and scatter fractions were ran- 
domly drawn from normal distributions around realistic values for 
the given activity level and object size. The resulting activity dis- 
tribution sinograms were then used as the Poisson parameters for 
generating the random counts. This ensured that the noise used in 
all simulation data were independently distributed. The simulation 
resulted in projection datasets containing noisy total, trues, scat- 
ters, randoms, and attenuation factors. The data sets with a noisy 
total count of < 2 · 10 5 or > 8 · 10 6 were discarded to stay within 
a clinically relevant count range. 291,010 projection datasets were 
kept, and the noisy total sinogram data had, on average, 10 6 total 
counts. The original 291,010 phantom images were used as ground 
truth. 
2.3. Data preparation 

Precorrection for scatters, randoms, and attenuation of the sim- 
ulated total projection data was done according to (3) , using the 
scatter and randoms estimate, and attenuation data from the PET- 
STEP simulation. Finally, the circular 700 mm FOV leaves the im- 
age corners empty, and thereby the first and last 56 radial projec- 
tion data bins also remain empty. These bins were subsequently 
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DeepPET: A deep encoder–decoder network for directly

solving the PET image reconstruction inverse problem

• Results on simulated data

Häggström et al., Medical Image Analysis, 2019
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OSEM, respectively. The superior performance of DeepPET over FBP 
and OSEM thus still holds for masked SSIM (ANOVA p < 10 −10 ). As 
expected, the performance of FBP relative the other methods in- 
creases when masking off the background, which for FBP contains 
notorious streak artifacts. 

Example FBP, OSEM, and DeepPET reconstructions from the 
test set are shown in Fig. 5 . The images were randomly cho- 
sen with constraints on body location to obtain diverse images. 
As shown, DeepPET generated less noisy images while preserving 
edges, which is especially apparent in large homogeneous areas 

Fig. 5. Random test set reconstructions using both conventional methods, as well as the proposed deep learning-based method. Left to right: PET sinogram (network input 
prior to precorrection), ground truth, FBP, OSEM, and the DeepPET reconstruction. Sinograms are labeled with their total counts, and images with SSIM, rRMSE, and PSNR 
relative ground truth. 
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DeepPET: A deep encoder–decoder network for directly

solving the PET image reconstruction inverse problem

• Results on real data

Häggström et al., Medical Image Analysis, 2019
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Fig. 7. Reconstructions of three real patient sinograms (hence no ground truth available). Left to right: PET sinogram (network input prior to precorrection), FBP, OSEM, and 
the DeepPET reconstruction. As shown, DeepPET produces smoother images while keeping a high level of sharpness and detail, compared with the other methods. 
( e.g . Fig. 5 c, g). Qualitative differences between OSEM and DeepPET 
are more discernible in Fig. 6 . For this figure we purposely chose 
to show cases where OSEM has similar image quality to DeepPET 
based on the rRMSE and/or SSIM measures to show that even in 
these cases, the OSEM images appear noisier, less detailed, and 
having less sharp edges. The same or better performance of OSEM 
with these metrics appears incongruous with the visual quality of 
the images wherein fine details appear to be better preserved with 
less noise with our DeepPET-based method. 

As a proof of concept, in Fig. 7 we show DeepPET reconstruc- 
tions using the clinical data. Because this was real patient data, 
there was no ground truth for comparison. Despite the fact that 
DeepPET was trained using simulated data, when using real patient 
data it produced perceptually smoother and more detailed images 
compared to either OSEM or FBP. It should be noted that the pa- 
tient sinogram data was noisy due to the extraction of 2D slices 
from the 3D data. A more in depth discussion of the results and 
their significance is given in the next section. 
4. Discussion 

The use of deep learning methods for medical imaging applica- 
tions is rapidly increasing, and tomographic medical image recon- 
struction is no exception, with new approaches being proposed on 
an accelerated time line. However, the vast majority of these ap- 
proaches are post-processing approaches, where a noisy initial im- 
age is denoised/restored. Alternatively, a few groups working with 
CT sinogram data are exploring the iterative schemes where deep 
learning methods augment the iterative process ( Adler and Oktem, 
2018; Gupta et al., 2018 ). These methods require the use of a to- 
mographic projection operator, increasing their computational ef- 
fort. In this study, we instead propose an end-to-end deep learn- 

ing image reconstruction that directly uses the sinogram data to 
create images without the need of a projection operator. In fact it 
is precisely for these reasons, that there are no forward- or back- 
projection operations, nor any iterations, that make DeepPET’s re- 
constructions so fast. 

As shown in the results, DeepPET was 108 times faster than 
standard OSEM and 3 times faster than FBP. DeepPET only requires 
one pass to reconstruct an image from sinogram data, whereas 
traditional techniques require multiple iterations. Regularized it- 
erative reconstruction methods were not compared in this study, 
but the speed gain is expected to be far greater due to the larger 
number of iterations typically used to ensure more uniform image 
convergence, and likely longer computations per iteration for reg- 
ularized methods. On a clinical system (here a GE D690/710), with 
the vendor algorithms implemented on a dedicated reconstruction 
computer, a typical clinically used OSEM reconstruction takes ap- 
proximately 90 s for a 3D sinogram (553 times more data than 
2D), roughly equivalent to 163 ms for 2D, which is 25 times longer 
than DeepPET. Furthermore, although our network was trained 
on state-of-the-art Volta GPUs on NVIDIA DGX-1 compute nodes, 
testing was done on a common NVIDIA GTX 1080Ti GPU. For clin- 
ical practice, only single forward passes are required for image 
reconstruction, limiting the demand for large memory and com- 
putational power, enabling the use of a simple GPU. For full 3D 
reconstruction, due to oblique projections, the sinogram data size 
increases by a factor of more than 500, which limits the use of 
some GPUs due to memory issues. 

The bias versus variance trade-off depicted in Fig. 3 shows that 
neither FBP nor OSEM are capable of producing images that si- 
multaneously have the same low bias and variance as DeepPET. 
Hence, according to our results, images of the same quality as 
those produced by DeepPET are unobtainable using conventional, 
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these cases, the OSEM images appear noisier, less detailed, and 
having less sharp edges. The same or better performance of OSEM 
with these metrics appears incongruous with the visual quality of 
the images wherein fine details appear to be better preserved with 
less noise with our DeepPET-based method. 

As a proof of concept, in Fig. 7 we show DeepPET reconstruc- 
tions using the clinical data. Because this was real patient data, 
there was no ground truth for comparison. Despite the fact that 
DeepPET was trained using simulated data, when using real patient 
data it produced perceptually smoother and more detailed images 
compared to either OSEM or FBP. It should be noted that the pa- 
tient sinogram data was noisy due to the extraction of 2D slices 
from the 3D data. A more in depth discussion of the results and 
their significance is given in the next section. 
4. Discussion 

The use of deep learning methods for medical imaging applica- 
tions is rapidly increasing, and tomographic medical image recon- 
struction is no exception, with new approaches being proposed on 
an accelerated time line. However, the vast majority of these ap- 
proaches are post-processing approaches, where a noisy initial im- 
age is denoised/restored. Alternatively, a few groups working with 
CT sinogram data are exploring the iterative schemes where deep 
learning methods augment the iterative process ( Adler and Oktem, 
2018; Gupta et al., 2018 ). These methods require the use of a to- 
mographic projection operator, increasing their computational ef- 
fort. In this study, we instead propose an end-to-end deep learn- 

ing image reconstruction that directly uses the sinogram data to 
create images without the need of a projection operator. In fact it 
is precisely for these reasons, that there are no forward- or back- 
projection operations, nor any iterations, that make DeepPET’s re- 
constructions so fast. 

As shown in the results, DeepPET was 108 times faster than 
standard OSEM and 3 times faster than FBP. DeepPET only requires 
one pass to reconstruct an image from sinogram data, whereas 
traditional techniques require multiple iterations. Regularized it- 
erative reconstruction methods were not compared in this study, 
but the speed gain is expected to be far greater due to the larger 
number of iterations typically used to ensure more uniform image 
convergence, and likely longer computations per iteration for reg- 
ularized methods. On a clinical system (here a GE D690/710), with 
the vendor algorithms implemented on a dedicated reconstruction 
computer, a typical clinically used OSEM reconstruction takes ap- 
proximately 90 s for a 3D sinogram (553 times more data than 
2D), roughly equivalent to 163 ms for 2D, which is 25 times longer 
than DeepPET. Furthermore, although our network was trained 
on state-of-the-art Volta GPUs on NVIDIA DGX-1 compute nodes, 
testing was done on a common NVIDIA GTX 1080Ti GPU. For clin- 
ical practice, only single forward passes are required for image 
reconstruction, limiting the demand for large memory and com- 
putational power, enabling the use of a simple GPU. For full 3D 
reconstruction, due to oblique projections, the sinogram data size 
increases by a factor of more than 500, which limits the use of 
some GPUs due to memory issues. 

The bias versus variance trade-off depicted in Fig. 3 shows that 
neither FBP nor OSEM are capable of producing images that si- 
multaneously have the same low bias and variance as DeepPET. 
Hence, according to our results, images of the same quality as 
those produced by DeepPET are unobtainable using conventional, 
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MR-based synthetic CT generation using a deep CNN method

Han, Medical Physics, 2017

Sensation 16 scanner with tube voltage 120 kV, exposure
300 mAs, in-plane resolution 0.59 0.5 mm2, and slice thick-
ness of 1 mm.

Each patient’s MR/CT image pair was aligned rigidly
using a mutual information rigid registration algorithm, and
the CT was resampled to match the resolution and field of
view of the MR image. Each MR image was further corrected
for intensity non-uniformity using the N3 bias field correc-
tion algorithm.43 All MR images were then histogram-
matched to a randomly chosen template to help standardize
image intensities across different patients using the method
of Cox et al.44

To better evaluate the accuracy of sCT estimation, a binary
head mask was automatically derived from each MR image
to separate the head region from the non-anatomical, back-
ground region of the image. This was achieved by applying
the Otsu auto-thresholding method45 on each MR image. A
morphological closing operator was employed to fill in gaps
around the nasal cavities and the ear canals, the largest con-
nected component of which then produced the head mask.
Figs. 1(a) and 1(b) show one example MR image and the
head mask computed.

It should be noted that every patient had a stereotactic head
frame that was used in conjunction with Gamma Knife! treat-
ment. The head frame is totally invisible in the MR image but
only present in the CT image. Its position also differs in each
patient. It is infeasible to expect that a model based on the MR
image alone can reliably predict the head frame. To avoid any
adverse impact of the head frame on model training, we artifi-
cially removed the head frame from each CT image by setting
all voxels outside the previously computed head mask region
to a HU of !1000. Figs. 1(c) and 1(d) show axial views of a
CT image before and after the head frame was removed. The
head frame caused streaking artifacts in the CT image of every
patient, as can be seen in these figures. It should be noted that
these random artifacts in the “ground truth” CT images inevi-
tably cause some over-estimation of the error when evaluating
the accuracy of the predicted sCTs.

2.B. Deep CNN (DCNN) model for sCT estimation

As mentioned in the introduction section, we design a 2D
DCNN model in this work to directly learn a mapping

function to convert a 2D MR slice to its corresponding 2D
CT. The model can be trained by collecting all 2D MR slices
with corresponding 2D CT slices from each training subject’s
3D MR/CT pair. Once the model is trained, it can be applied
on a new MR image slice-by-slice and the results can be
assembled to get the final 3D sCT. Directly training a full-3D
DCNN model is infeasible due to limitations in GPU memory
of commodity GPU cards and due to limited training data in
this study. It may also be unnecessary since a 2D slice already
contains rich contextual information.

Many different CNN models have been proposed in the
computer vision literature, and their architectures can be very
flexible. In this work, we build upon recent developments in
semantic image segmentation where a deep CNN model can
be trained from end-to-end to directly produce a dense label
map for object segmentation in a 2D image.39,46–48 In partic-
ular, we adopt and modify from the U-net architecture that
was proposed in Ronneberger et al.,39 and the resulting net-
work architecture is shown in Fig. 2.

(a) (b) (c) (d)

FIG. 1. Illustration of data preprocessing. A 2D axial slice is shown in each subfigure for: (a) the MR image; (b) the computed head mask; (c) the original CT
image; (d) the CT image with the stereotactic head frame masked out.

FIG. 2. Overall architecture of the proposed sCT DCNN model. Each blue
box represents a (3 9 3) convolutional layer (with a rectified linear unit as
the activation function). Each red box denotes a max-pooling layer, and each
purple box denotes an un-pooling layer. Each white box denotes a copying
layer. The 2D image size and the depth (number of channels) of the feature
map from each convolution layer are provided at the top of each blue box.
The green box denotes the final 1 9 1 convolution layer that generates the
output sCT prediction.
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corresponding CT images. Evaluation results showed that the
DCNN method offered significantly better accuracy than an
atlas-based method with patch refinement and fusion. This
result is expected since the atlas-based method relies on patch
comparison to find similar atlas candidates, as also common
in other atlas- or patch-based methods proposed in the

literature. A small, local patch has limited image information
and using raw image intensities of a patch as features may
suffer from large redundancy in the data and reduce the dis-
crimination power. On the contrary, the DCNN model auto-
matically learns a hierarchy of image features at different
scales and complexity from a full image slice.

MR sCT Real CT Difference Map

FIG. 4. Qualitative comparison of sCTs and real CT for subject #5. The image type that each column represents is indicated at the bottom of the corresponding
column. First column: MR; second column: sCTs (rows 1, 3, and 5 show the DCNN results, and rows 2, 4, and 6 show the atlas-based results); third column: real
CT; fourth column: difference maps (rows 1, 3, and 5 correspond to the DCNN results, and rows 2, 4, and 6 correspond to the atlas-based results). The color bar
is associated with the difference maps. First and second rows: axial slices; third and fourth rows: coronal slices; fifth and sixth rows: sagittal slices.
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Medical Image Synthesis with Context-Aware GANs

Nie et al., MICCAI, 2017
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Fig. 2. Architecture used in the Generative Adversarial setting for estimation of
synthetic CT image.

magnitudes of the gradients between the ground-truth CT image and the esti-
mated CT image. In this way, the estimated CT image will try to keep the
zones with strong gradients (i.e., edges) for an effective compensation of the L2
reconstruction term. This can be approximated as finite difference during the
implementation. Finally, the total loss used for training the generator G can be
defined as the weighted sum of all the terms as shown in Eq. 3.

L (X,Y ) = λ1Lbce(D(G(X)), 1) + λ2∥Y −G(X)∥22 + λ3Lgdl (X,Y ) (3)

The training is performed in an alternating fashion. First, D is updated by
taking a mini-batch of real CT data and a mini-batch of generated CT data
(the output of G). Then, G is updated by using another mini-batch of samples
including MRI and their corresponding CT. In Fig. 2, we also show the archi-
tecture of our generator network G which has the constraints mentioned above,
where the numbers indicate the filter sizes. This network takes as input an MR
image, and tries to generate the corresponding CT image. It has 8 stages con-
taining convolutions, Batch Normalization and ReLU operations with number
of filters 32, 32, 32, 64, 64, 64, 32, 32, respectively. The last layer only includes 1
convolutional filter, and its output is considered as the estimated CT. Regarding
the architecture, we avoid the use of pooling layers since they will reduce the
spatial resolution of feature maps. The Discriminator is a typical CNN architec-
ture including three stages of convolutions+Batch Normalization+ReLU+Max
Pooling, followed by one convolutional layer and three fully connected layers,
where the first two use ReLU as activation function, and the last one uses sig-
moid (whose output represents the likelihood that the input data is drawn from
the distribution of real CT). The filter size is 5 × 5 × 5, the numbers of filters
are 32, 64, 128 and 256 for the convolutional layers, and the numbers of output
nodes in the fully connected layers are 512, 128 and 1.

2.2 Auto-Context Model (ACM) for Refinement

Since our work is patch-based, the context information available for each train-
ing sample is limited inside of the patch. This affects the modeling capacity of
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MRI FCN GAN Ground Truth

Fig. 3. Visual comparison for impact of adversarial training. FCN means the case
without adversarial training, and GAN means the case with adversarial training.

Impact of Proposed GAN Model: To show the contribution of the pro-
posed GAN model, we conduct comparison experiments between the traditional
FCN (i.e., just the generator shown in Fig. 2) and the proposed GAN model.
The PSNR values are 24.7 and 25.9 for the traditional FCN and the proposed
approach, respectively. These results do not include the adoption of ACM. We
visualize results in Fig. 3, where the leftmost image is the input MRI and the
rightmost image is the ground-truth CT. We can clearly see that the gener-
ated data using the GAN approach has less artifacts than the traditional FCN
by estimating an image that is closer to the desired output quantitatively and
qualitatively.

Experimental Results for Both Datasets: Considering the trade-off between
the performance and the training time, we choose 2 iterations for ACM in our
experiments on both datasets [15]. To qualitatively compare the estimated CT
by different methods, we visualize the generated CT with the ground-truth CT
in Fig. 4 (left side). We can see that the proposed algorithm can better preserve
the continuity, coalition and smoothness in the prediction results, since it uses
image gradient difference constraints in the image patch as discussed in Sect. 2.1.

Fig. 4. Visual comparison of MR image, the estimated CT images by our method and
other competing methods, and the ground-truth CT image for the typical brain (left)
and pelvic (right) cases.
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Deep MR to CT Synthesis using Unpaired Data

Wolterink et al., SASHIMI, 2017

2 J.M. Wolterink et al.

Paired data Unpaired data

MR

CT

Fig. 1: Left When training with paired data, MR and CT slices that are simul-
taneously provided to the network correspond to the same patient at the same
anatomical location. Right When training with unpaired data, MR and CT slices
that are simultaneously provided to the network belong to di↵erent patients at
di↵erent locations in the brain.

GAN, the synthesis CNN competes with a discriminator CNN that aims to dis-
tinguish synthetic images from real CT images. The discriminator CNN provides
feedback to the synthesis CNN based on the overall quality of the synthesized
CT images.

Although the GAN method by Nie et al. [9] addresses the issue of image
misalignment by incorporating an image-wise loss, it still contains a voxel-wise
loss component requiring a training set of paired MR and CT volumes. In prac-
tice, such a training set may be hard to obtain. Furthermore, given the scarcity
of training data, it may be beneficial to utilize additional MR or CT training
volumes from patients who were scanned for di↵erent purposes and who have
not necessarily been imaged using both modalities. The use of unpaired MR
and CT training data would relax many of the requirements of current deep
learning-based CT synthesis systems (Fig. 1).

Recently, methods have been proposed to train image-to-image translation
CNNs with unpaired natural images, namely DualGAN [11] and CycleGAN [12].
Like the methods proposed in [4,8,9], these CNNs translate an image from one
domain to another domain. Unlike these methods, the loss function during train-
ing depends solely on the overall quality of the synthesized image as determined
by an adversarial discriminator network. To prevent the synthesis CNN from
generating images that look real but bear little similarity to the input image,
cycle consistency is enforced. That is, an additional CNN is trained to translate
the synthesized image back to the original domain and the di↵erence between
this reconstructed image and the original image is added as a regularization term
during training.

Here, we use a CycleGAN model to synthesize brain CT images from brain
MR images. We show that training with pairs of spatially aligned MR and CT
images of the same patients is not necessary for deep learning-based CT synthe-
sis.
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sis.

30 SASHIMI2017, 010, v2 (final): ’Deep MR to CT Synthesis using Unpaired Data’



Methodological parenthesis 17

GANs

Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017

CT

GMRI→CT(MRI)

DCT

MRI

GMRI→CT



Methodological parenthesis 18

Cycle GANs

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017
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Deep MR to CT Synthesis using Unpaired Data

Wolterink et al., SASHIMI, 2017

MR to CT Synthesis using Unpaired Training Data 5
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Fig. 3: The CycleGAN model consists of a forward cycle and a backward cycle.
In the forward cycle, a synthesis network SynCT is trained to translate an in-
put MR image IMR into a CT image, network SynMR is trained to translate
the resulting CT image back into an MR image that approximates the original
MR image, and DisCT discriminates between real and synthesized CT images.
In the backward cycle, SynMR synthesizes MR images from input CT images,
SynCT reconstructs the input CT image from the synthesized image, andDisMR

discriminates between real and synthesized MR images.
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Deep MR to CT Synthesis using Unpaired Data

Wolterink et al., SASHIMI, 2017

MR to CT Synthesis using Unpaired Training Data 9
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Fig. 6: From left to right Input MR image, synthesized CT image, reconstructed
MR image, and relative error between the input and reconstructed MR image.

the model trained using paired data. Qualitative analysis showed that CT im-
ages obtained by the model trained with unpaired data looked more realistic,
contained less artifacts and contained less blurring than those obtained by the
model trained with paired data. This was reflected in the quantitative analysis.
This could be due to misalignment between MR and CT images (Fig. 2), which
is ignored when training with unpaired data.

The results indicate that image synthesis CNNs can be trained using un-
aligned data. This could have implications for MR-only radiotherapy treatment
planning, but also for clinical applications where patients typically receive only
one scan of a single anatomical region. In such scenarios, paired data is scarce,
but there are many single acquisitions of di↵erent modalities. Possible applica-
tions are synthesis between MR images acquired at di↵erent field strengths [1],
or between CT images acquired at di↵erent dose levels [10].

Although the CycleGAN implementation used in the current study was de-
veloped for natural images, synthesis was successfully performed in 2D medical
images. In future work, we will investigate whether 3D information as present
in MR and CT images can further improve performance. Nonetheless, the cur-
rent results already showed that the synthesis network was able to e�ciently
translate structures with complex 3D appearance, such as vertebrae and bones.

The results in this study were obtained using a model that was trained with
MR and CT images of the same patients. These images were were rigidly reg-
istered to allow a voxel-wise comparison between synthesized CT and reference
CT images. We do not expect this registration step to influence training, as
training images were provided in a randomized unpaired way, making it unlikely
that both an MR image and its registered corresponding CT image were simul-
taneously shown to the GAN. In addition, images were randomly cropped, which
partially cancels the e↵ects of rigid registration. Nevertheless, using images of
the same patients in the MR set and the CT set may a↵ect training. The syn-
thesis networks could receive stronger feedback from the discriminator, which
would occasionally see the corresponding reference image. In future work, we
will extend the training set to investigate if we can similarly train the model
with MR and CT images of disjoint patient sets.

SASHIMI2017, 010, v2 (final): ’Deep MR to CT Synthesis using Unpaired Data’ 37

MR to CT Synthesis using Unpaired Training Data 7

ICTSynCT(IMR)IMR |SynCT(IMR)-ICT|

600

0

HU

Fig. 4: From left to right Input MR image, synthesized CT image, reference real
CT image, and absolute error between real and synthesized CT image.

Figure 4 shows an example MR input image, the synthesized CT image ob-
tained by the model and the corresponding reference CT image. The model has
learned to di↵erentiate between di↵erent structures with similar intensity values
in MR but not in CT, such as bone, ventricular fluid and air. The di↵erence image
shows the absolute error between the synthesized and real CT image. Di↵erences
are least pronounced in the soft brain tissue, and most in bone structures, such
as the eye socket, the vertebrae and the jaw. This may be partly due to the re-
duced image quality in the neck area and misalignment between the MR image
and the reference CT image. Table 1 shows a quantitative comparison between
real CT and synthesized CT images in the test set. MAE and PSNR values show
high consistency among the di↵erent test images.

To compare unpaired training with conventional paired training, an addi-
tional synthesis CNN with the same architecture as SynCT was trained using
paired MR and CT image slices. For this, we used the implementation of [5]
which, like [9], combines voxel-wise loss with adversarial feedback from a dis-
criminator network. This discriminator network had the same architecture as
DisCT . A paired t-test on the results in Table 1 showed that agreement with the
reference CT images was significantly lower (p < 0.05) for images obtained using
this model than for images obtained using the unpaired model. Fig. 5 shows a
visual comparison of results obtained with unpaired and paired training data.
The image obtained with paired training data is more blurry and contains a
high-intensity artifact in the neck.

During training, cycle consistency is explicitly imposed in both directions.
Hence, an MR image that is translated to the CT domain should be successfully
translated back to the MR domain. Fig. 6 shows an MR image, a synthesized
CT image and the reconstructed MR image. The di↵erence map shows that
although there are errors with respect to the original image, these are very small
and homogeneously distributed. Relative di↵erences are largest at the contour
of the head and in air, where intensity values are low. The reconstructed MR
image is remarkably similar to the original MR image.
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Magnetic resonance imaging (MRI)

Ran et al., Medical Image Analysis, 2019

M. Ran, J. Hu and Y. Chen et al. / Medical Image Analysis 55 (2019) 165–180 169 

Fig. 4. One denoised T1w example from the testing set with 15% Rician noise. (a) Noise-free image, (b) noisy image, (c) BM4D, (d) PRI-NLM3D, (e) CNN3D, (f) RED-WGAN, 
(g) residual of BM4D, (h) residual of PRI-NLM3D, (i) residual of CNN3D, (j) residual of RED-WGAN. 
BM4D and PRI-NLM3D. For T1w images, the scores of RED-WGAN 
are close to CNN3D when the noise level is less than 7%. While the 
noise level increases, RED-WGAN yields a better performance than 
the other methods. For T2w images, the results of RED-WGAN are 
slightly better than all the other methods in most noise levels. In 

Table 3 , the differences are trivial, but the results of CNN3D are 
slightly better than those of RED-WGAN when the noise level is 
less than 11%. 

Figs. 4–6 provide a visual evaluation of the different re- 
sults for T1w, T2w and PDw brain images selected from the 
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Fig. 2. The architecture of the generator network G . 

Fig. 3. The structure of the discriminator network D . 
We randomly selected 110 T1-, T2- and PD-weighted brain 

image volumes from the Hammersmith dataset acquired from a 
Philips 3T scanner, which is a subset of the IXI dataset. One hun- 
dred image volumes were randomly selected as the training set, 
and the other 10 image volumes from the Hammersmith dataset 
formed the testing set. To evaluate the robustness of the proposed 
model for different scanners, 10 image volumes from the Guy’s 
Hospital dataset were also added into the testing set. In the train- 
ing set, we simulated noisy images by manually adding Rician 
noise to the images. It is well known that deep learning-based 
methods require a great deal of training samples, which is very 
difficult to satisfy, especially in clinics. In this study, to solve this 
problem, overlapping voxels were extracted from the samples to 
train the network. This method has been proven efficient in that 
perceptual differences can be better detected, and the number of 
samples significantly increases ( Dong et al., 2016 ; gan Xie et al., 
2012; Jain and Seung, 2008 ). A total of 50,0 0 0 voxels with of size 
32 × 32 × 6 are acquired via a fixed sliding step. 
3.1.2. Simulated data 

For simulated experiments, the BrainWeb database ( http:// 
brainweb.bic.mni.mcgill.ca/brainweb/ ) was used. This dataset con- 
tains T1-, T2- and PD-weighted brain images with a size of 
181 × 217 × 181 with 1 × 1 × 1 resolution. Meanwhile, the net- 
work trained by the clinical dataset from the Hammersmith Hos- 
pital dataset was used to validate the performance and robust- 
ness of our model. In the evaluation phase, we chose 6 continu- 
ous T1w slices from the middle position of the transverse plane 
as a test sample to evaluate and compare the performance of 
the methods. 
3.2. Training details 

To demonstrate the advantages obtained by our proposed net- 
work architecture, two different networks were trained, including 
RED-WGAN and CNN3D (RED-WGAN with only the generator part 

and the MSE loss), the latter of which can be seen as an improved 
version of the method proposed by Jiang et al. (2018) . 

Both networks mentioned above were trained on T1-, T2- 
and PD-weighted brain image volumes with specific noise lev- 
els. The parameters λ1 , λ2 and λ3 were experimentally set to 
1, 0.1 and 1e −3 , respectively, according to the suggestion in 
Ledig et al. (2017) and Yang et al. (2017a) . Following the sug- 
gestions in Goodfellow et al. (2014) , the penalty coefficient λ in 
Eq. (4) was set to 10. The Adam algorithm was used to opti- 
mize the loss function ( Kinga and Adam, 2015 ), and the parame- 
ters for the Adam optimizer were set to α = 5e − 5 , β1 = 0 . 5 , β2 = 
0 . 9 . Our codes for this work are available on https://github.com/ 
Deep- Imaging- Group/RED- WGAN . 
3.3. Evaluation methods 

To validate the performance of the proposed RED-WGAN, three 
methods (CNN3D, BM4D and PRI-NLM3D ( Manjón et al., 2012 )) 
were compared. To evaluate the performance of these methods, 
three quantitative metrics were employed. The first one is the 
peak signal-to-noise ratio (PSNR), which considers the root mean 
square error (RMSE) between the ground truth and denoised im- 
ages. The second is the structural similarity index measure (SSIM) 
( Wang et al., 2004 ), which measures the similarity between ground 
truth and denoised images. The last one is the information fidelity 
criterion (IFC) ( Hamid Rahim et al., 2005 ), which quantifies the 
mutual information between the reference and the testing images 
to evaluate the perceptual quality. 
3.4. Results 
3.4.1. Clinical results 

The average quantitative results of BM4D, PRI-NLM3D, CNN3D 
and RED-WGAN on T1w, T2w and PDw images with different noise 
levels from 1% to 15% with a step of 2% are illustrated in Tables 1–
3 . The performances on all metrics of the DL-based methods are 
significantly superior to traditional denoising algorithms, such as 
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( Isola et al., 2017 ) and image generation ( Kataoka et al., 2016 ). The 
role of the discriminative model is to determine whether a sample 
is from the generative model distribution P g or the real data distri- 
bution P r , and the generative model generates a new sample from 
the input sample and tries to make the new sample satisfy the real 
data distribution P r as much as possible. 

The training process of GANs is a minimax game with the fol- 
lowing loss function L ( D , G ) as 
min 

G max 
D L ( D, G ) = E y ∼P r [ log D ( y ) ] + E x ∼P n [ log ( 1 − D ( G ( x ) ) ) ] (3) 

To solve Eq. (3) , G and D are optimized alternatingly. 
In Arjovsky and Bottou (2017) , the authors suggested that the 

training of GAN is difficult because Eq. (3) may lead to a vanish- 
ing gradient for the generator G when the discriminator D is fixed. 
To avoid this problem, an improved variant of the GAN was pro- 
posed by Arjovsky and Bottou, called Wasserstein GAN (WGAN) 
( Arjovsky et al., 2017 ). Furthermore, Gulrajani et al. presented an 
improved version of WGAN with a gradient penalty to accelerate 
the convergence ( Gulrajani et al., 2017 ). The changes in the loss 
function are as follows: 
L WGAN ( D ) = − E y ∼P r [ D ( y ) ] + E x ∼P n [ D ( G ( x ) ) ] 

+ λE ̂ x ∼P ̂ x [ (∥∥∇ ̂ x D ( ˆ x )∥∥
2 − 1 )2 ] 

(4) 
where the last term is a gradient penalty factor, λ is a penalty co- 
efficient, P ̂ x is a distribution that uniformly samples along straight 
lines between pairs of points sampled from the real data distri- 
bution P r and the generator distribution P g . The loss function of 
generator G is formulated as: 
L WGAN ( G ) = −E x ∼P n [ D ( G ( x ) ) ] (5) 
2.3. Combined loss function 

The MSE loss function is the most common loss function for 
pixel-level transform tasks, which minimizes the pixelwise differ- 
ences between the ground truth image and the generated image. It 
can be calculated as follows: 
L MSE = 1 

whd ∥ G ( x ) − y ∥ 2 (6) 
where w, h , and d represent the dimensions of the image. Recent 
studies suggest that although MSE loss function can achieve a high 
peak signal-to-noise ratio (PSNR), it may suffer from a loss of de- 
tails, especially high-frequency details, which have a serious im- 
pact on clinical diagnostics ( Ledig et al., 2017 ). 

To efficiently handle this problem, a perceptual loss is involved 
in the proposed loss function ( Bruna et al., 2015; Gatys et al., 2015; 
Johnson et al., 2016 ). A pretrained network can be utilized to ex- 
tract the features from the ground truth and generated images. The 
difference between the features from the ground truth image and 
the generated image is treated as the perceptual similarity. Then, 
the perceptual loss function is defined as follows: 
L Perceptual = 1 

whd ∥ ∅ ( G ( x ) ) − ∅ ( y ) ∥ 2 F (7) 
where ∅ is a feature extractor, and w, h , and d represent the di- 
mensions of feature maps. In this paper, we apply the pretrained 
VGG-19 network ( Simonyan and Zisserman, 2014 ) to extract the 
features of the image. The VGG-19 network contains 19 layers: the 
first 16 layers are convolutional layers, and the subsequent 3 lay- 
ers are fully connected layers. We only use the first 16 layers as 
our feature extractor. Then, the specific perceptual loss based on 
the VGG network is employed as follows: 
L VGG = 1 

whd ∥ V GG ( G ( x ) ) − V GG ( y ) ∥ 2 F (8) 

Fig. 1. Overall architecture of our proposed RED-WGAN network. 
Then, we obtain the weighted joint loss function of generator 

G , which consists of MSE loss, VGG loss and discriminator loss. 
L RED −WGAN = λ1 L MSE + λ2 L VGG + λ3 L WGAN ( G ) (9) 
2.4. Network architectures 

The overall architecture of the proposed RED-WGAN network is 
illustrated in Fig. 1 . It consists of a generator network G , a dis- 
criminator network D , and the VGG network is used as the fea- 
ture extractor. The specific structure of the generator network G is 
demonstrated in Fig. 2 . To accelerate the training procedure and 
preserve more details, short connections and deconvolution layers 
are introduced. Furthermore, to explore the ability of the autoen- 
coder to deal with noisy samples, the convolution and deconvolu- 
tion layers are symmetrically arranged. Specifically, the generator 
G has an encoder–decoder structure composed of 8 layers: 4 con- 
volutional and 4 deconvolutional layers. Short connections link the 
corresponding convolution-deconvolutional layer pairs. Except for 
the last layer, the other layers perform a 3D convolution, a batch- 
normalization and a LeakyReLU operation in sequence, and the last 
layer only performs a 3D convolution and a LeakyReLU operation. 
In this paper, all kernels are set to 3 × 3 × 3, and the sequence of 
the number of filters used is 32, 64, 128, 256, 128, 64, 32, 1. 

The structure of the discriminator network D is illustrated in 
Fig. 3 . It has 3 convolutional layers: one with 32 filters, on with 64 
filters and one with 128 filters. The kernel sizes are set to 3 × 3 × 3 
in all the convolution layers. The last layer is a fully connected 
layer that has a single output: the discriminant result. 

We use a pretrained VGG-19 network to extract the features. 
For more details, the readers can refer to the original reference 
( Simonyan and Zisserman, 2014 ). Due to the power of transfer 
learning ( Pan and Yang, 2010 ), there is no need to retrain the net- 
work with our target MR images. 
3. Experiment 
3.1. Datasets 

To validate the performance of the proposed RED-WGAN, ex- 
tensive experiments on both clinical and simulated datasets were 
performed. 
3.1.1. Clinical data 

For the clinical experiments, the well-known IXI dataset ( http:// 
brain- development.org/ixi- dataset/ ), which is collected from 3 dif- 
ferent hospitals, was used. The detailed scanning configuration is 
given in the website mentioned above. 

Overall architecture

Generator

Discriminator
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Fig. 4. One denoised T1w example from the testing set with 15% Rician noise. (a) Noise-free image, (b) noisy image, (c) BM4D, (d) PRI-NLM3D, (e) CNN3D, (f) RED-WGAN, 
(g) residual of BM4D, (h) residual of PRI-NLM3D, (i) residual of CNN3D, (j) residual of RED-WGAN. 
BM4D and PRI-NLM3D. For T1w images, the scores of RED-WGAN 
are close to CNN3D when the noise level is less than 7%. While the 
noise level increases, RED-WGAN yields a better performance than 
the other methods. For T2w images, the results of RED-WGAN are 
slightly better than all the other methods in most noise levels. In 

Table 3 , the differences are trivial, but the results of CNN3D are 
slightly better than those of RED-WGAN when the noise level is 
less than 11%. 

Figs. 4–6 provide a visual evaluation of the different re- 
sults for T1w, T2w and PDw brain images selected from the 
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Fig. 14. Denoised result on real T1w human brain data. 

Fig. 15. Denoised result on real T1w mouse brain data. 
applications without prior knowledge about the noise level, train- 
ing the DL model with a mix of possible noise levels is one of the 
potential solutions. The performance of RED-WGAN-m is slightly 
worse than traditional methods at a low noise level (1%). The 
possible reason is that when simultaneously training with higher 
noise levels, the risk that the network may mistreat the noise as 
details from a low noise level is increased. 

It also can be observed that the model RED-WGAN-n trained 
with a single noise level of n% can efficiently cover a certain 
noise range. For example, RED-WGAN-9, which was trained with 
a 9% noise level, has better scores on the testing set with 7–
13% noise levels. This can also be seen as solid evidence for the 
generalization and robustness of our model, as most traditional 
methods also need to adjust the parameters to fit the different 
noise levels. 
3.5.2. Real MR data 

The propose of this subsection is to verify the effectiveness of 
the proposed model on real noisy clinical data. The experiments 
were conducted on two brain MR image volumes, which belong to 
a human being and a mouse, respectively. The human brain image 
was acquired on a Siemens (Erlangen, Germany) Trio Tim 3T scan- 

ner using an MP-RAGE sequence with TR = 2400 ms, TE = 2.01 ms, 
TI = 10 0 0 ms, flip angle = 8, voxel resolution = 0.8 × 0.8 × 0.8 mm 3 
and 256 × 256 × 224 voxels. The mouse brain image was acquired 
on a Bruker BioSpec 7T scanner using a 3D RARE sequence with a 
TR = 1200, an effective TE = 62.5 ms, a RARE factor = 16, a voxel 
resolution = 0.1 × 0.1 × 0.1 mm 3 and 225 × 192 × 96 voxels. Due to 
the lack of knowledge about the noise level in the real data, we ex- 
perimentally selected RED-WGAN models trained with 1% and 4% 
noise for human and mouse data, respectively. Since ground truth 
images are unavailable, the SNR was measured in a homogeneous 
region and used as the quantitative metric. The results are shown 
in Figs. 14 and 15 . In Fig. 14 , it is clear that the traditional meth- 
ods cannot eliminate all the noise in the brain, especially in the 
epencephalon and brainstem, but RED-WGAN can efficiently sup- 
press most of the noise, even near the epencephalon and brain- 
stem, which are indicated by red arrows. It is noted that a certain 
level of noises in homogeneous areas can be noticed in Fig. 14 (d). 
In Fig. 15 , the noise is much heavier than Fig. 14 . All the methods 
can remove most of the noise, but the results of BM4D and PRI- 
NLM3D look oversmoothed, and RED-WGAN obtained better visual 
effects and preserved more details. Furthermore, RED-WGAN ob- 
tained a better SNR in both cases. 
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0.9375× 0.9375mm in-plane resolution and 3mm slice thickness. The
datasets were acquired at a rest position and the subjects were required
to remain still for 1.5–3min for each orientation. For each subject, the
three axial, sagittal, and coronal acquisitions were interpolated onto a
0.9375× 0.9375× 0.9375mm digital grid and N4 corrected [24].

We applied both JogSSR and SMORE(3D) on single acquisitions to

compare to the multi-view super-resolution reconstruction. The multi-
view reconstruction algorithm we used for comparison is an improved
version of the algorithm described in Woo et al. [2]. This approach
takes three interpolated image volumes, aligns them using ANTs affine
registration [31] and SyN deformable registration [32], and then uses a
Markov random field image restoration algorithm (with edge

Fig. 2. T2 Flair MRI from an MS subject: Axial, sagittal, and coronal views of the acquired 0.828× 0.828× 4.4mm image, and the reconstructed volumes with
0.828× 0.828× 0.828mm digital grid through cubic b-spline interpolation, JogSSR, and SMORE(2D). In each view, we pick a path across lesions, shown as colored
arrows in the images, and plot the line profiles of the three methods in the same plot on the bottom of each view.

C. Zhao, et al.

Zhao et al., Magnetic Resonance Imaging, 2019
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Self super-resolution for MRI

resolution, resulting in a HR volume. Details can be found in [23], with
a modification that the anti-ringing filter is changed to a Fermi filter to
better mimic the behavior in scanners. SMORE(2D) uses the same
general concept as SMORE(3D), but adds a self anti-aliasing (SAA)
network trained with aliased axial slices. The aliased slices are created
by first applying the filter h(x), which in this case mimics the through-
plane slice profile, and then a downsampling/upsampling sequence that
produces aliasing at the same level as that found in the through-plane
direction. We first apply the trained SAA network on sagittal slices to
remove aliasing in the sagittal plane. We then apply the trained SSR
network on the coronal plane to both remove aliasing in the coronal
plane and improve through-plane resolution, resulting in an anti-
aliased HR volume. Details can be found in [8]. For both SMORE(3D)
and SMORE(2D), we only apply the trained networks in one orientation
instead of two (or more) as described in our previous conference papers
[8,23]. This reduces computation time from 20min to 15min for
SMORE(3D), and from 35min to 25min for SMORE(2D) on a Telsa K40
GPU, with only a minor impact on performance. Also we omit SAA
network and directly apply SSR network to the LR image to further
reduce time cost from 25min to 15min for SMORE(2D) if the ratio r
between through-plane and in-plane resolution is< 3, since the
aliasing is empirically not severe in this case.

The SAA and SSR neural networks currently used in SMORE are
both implemented using the state-of-the-art super-resolution EDSR
network [9]. In this paper, we implement patch-wise training with
randomly extracted 32× 32 patches. Training on small patches re-
stricts the effect receptive field [28] to avoid structural specificity so
that this network can better preserve pathology. It also reduces spatial
correlation of the training data, which can accelerate convergence in
theory [29]. To reduce training time, the networks are fine-tuned from
pre-trained models that were trained from arbitrary data. When ap-
plying the trained networks, we apply them to entire coronal or sagittal
slices (depending on whether it is SAA or SSR) rather than just 32× 32
patches. This is possible since EDSR is a fully convolutional network
(FCN) which allows an arbitrary input size [30].

2.2. Application to visual enhancement for MS lesions

In this experiment, we test whether super-resolved T2 FLAIR MR
images can give better visualization of white matter lesions in the brain
than the acquired images. The T2 Flair MR images were acquired from
multiple sclerosis (MS) subjects using a Philips Achieva 3 T scanner
with a 2D protocol and the following parameters:
0.828× 0.828× 4.4mm, TE=68ms, TR=11 s, TI= 2.8 s, flip
angle= 90°, turbo factor= 17, acquisition time=2m56 s. We per-
formed cubic b-spline interpolation, JogSSR [22], and SMORE(2D) on

the data using a 0.828× 0.828× 0.828mm digital grid. We show a
visual comparison on the regions of white matter lesions in axial, sa-
gittal, and coronal slices for the three methods. We also plot 1D in-
tensity profiles of the three methods across selected paths through
different lesions.

2.3. Application to visual enhancement of scarring in cardiac left
ventricular remodeling

In this experiment, we test whether super-resolved images can give
better visualization of the scarring caused by left ventricular re-
modeling after myocardial infarction than the acquired images. We
acquired two T1-weighted MR images from an infarcted pig, each with
a different through-plane resolution. One image, which serves as the HR
reference image, was acquired with resolution equal to
1.1× 1.1× 2.2mm, and then it was sinc interpolated on the scanner
(by zero padding in k-space) to 1.1× 1.1× 1.1 m. The other image was
acquired with resolution equal to 1.1× 1.1× 5mm. Both of these
images were acquired with a 3D protocol, inversion time=300ms, flip
angle= 25°, TR=5.4ms, TE= 2.5ms, and GRAPPA acceleration
factor R=2. The HR reference image has a segmented centric phase-
encoding order with 12 k-space segments per imaging window (heart
beat), while the LR subject image has 16 k-space segments.

In our experiment, we performed sinc interpolation, JogSSR, and
SMORE(3D) on the 1.1× 1.1× 5.0 mm data using a
1.1× 1.1× 1.1mm digital grid. These images were then rigidly re-
gistered to the reference image for comparison. We are interested in the
regions of thinning layer of midwall scar between the endocardial and
epicardial layers of normal myocardium and the thin layer of normal
myocardium between the scar and epicardial fat. These two regions of
interest are cropped and zoomed to show the details.

2.4. Application to multi-view reconstruction

In this experiment, we test whether a super-resolved image from a
single acquisition can give a comparable result to a multi-view super-
resolution image reconstructed from three acquisitions. MR images of
the tongue were acquired from normal speakers and subjects who had
tongue cancer surgically resected (glossectomy). Scans were performed
on a Siemens 3.0 T Tim Treo system using an eight-channel head and
neck coil. A T2-weighted Turbo Spin Echo sequence with an echo train
length of 12, TE= 62ms, and TR=2500ms was used. The field-of-
view (FOV) was 240× 240mm with a resolution of 256× 256. Each
dataset contained a sagittal, coronal, and axial stack of images con-
taining the tongue and surrounding structures. The image size for the
high-resolution MRI was 256× 256× z (z ranges from 10 to 24) with

Fig. 1. Overview of SMORE. Workflow of SMORE for MRI acquired with 3D protocols and 2D protocols, referred as SMORE(3D) and SMORE(2D). They are simplified
version of algorithms described in our previous conference papers [8,23].

C. Zhao, et al.
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0.9375× 0.9375mm in-plane resolution and 3mm slice thickness. The
datasets were acquired at a rest position and the subjects were required
to remain still for 1.5–3min for each orientation. For each subject, the
three axial, sagittal, and coronal acquisitions were interpolated onto a
0.9375× 0.9375× 0.9375mm digital grid and N4 corrected [24].

We applied both JogSSR and SMORE(3D) on single acquisitions to

compare to the multi-view super-resolution reconstruction. The multi-
view reconstruction algorithm we used for comparison is an improved
version of the algorithm described in Woo et al. [2]. This approach
takes three interpolated image volumes, aligns them using ANTs affine
registration [31] and SyN deformable registration [32], and then uses a
Markov random field image restoration algorithm (with edge

Fig. 2. T2 Flair MRI from an MS subject: Axial, sagittal, and coronal views of the acquired 0.828× 0.828× 4.4mm image, and the reconstructed volumes with
0.828× 0.828× 0.828mm digital grid through cubic b-spline interpolation, JogSSR, and SMORE(2D). In each view, we pick a path across lesions, shown as colored
arrows in the images, and plot the line profiles of the three methods in the same plot on the bottom of each view.
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Fig. 5. Comparison between SMORE(2D) and multi-view reconstruction for a tongue tumor subject: Axial, Sagittal, and Coronal views of the tongue region in cubic b-
spline interpolation and SMORE(2D) results for a single coronal acquisition, and multi-view reconstructed image [2] using three acquisitions. The arrows point out
the bright looking scar tissue from a removed tumor.

Fig. 6. Coronal views of brain ventricle parcellation on an NPH subject: The volumes with digital resolution of 0.8× 0.8× 0.8mm that resolved from
0.8× 0.8× 3.856mm LR image using cubic-bspline interpolation, JogSSR, SMORE(2D), and the interpolated 0.8× 0.8× 0.9mm HR image. The patches in blue
boxes are zoomed in the second row to show details of the 4th ventricle. The last row shows the VParNet [33] parcellation results and the manual labeling for the 4th
ventricle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Interpolation SMORE HR

Thickness Interpolation SMORE HR (0.9 mm)

1.205 mm 0.969 0.9696 0.9699

1.928 mm 0.9665 0.9690

3.0125 mm 0.9602 0.9675

3.856 mm 0.9524 0.9632

4.82 mm 0.9408 0.9607

Quantitative results

Dice score (overlap between manual and automatic
segmentations)
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U-Net: Convolutional Networks for Biomedical Image 
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the di↵erent operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-o↵ between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Ronneberger et al., MICCAI, 2015 (12076 citations on 05/03/2020)
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Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

algorithms on this data set use highly data set specific post-processing methods1

applied to the probability map of Ciresan et al. [1].
We also applied the u-net to a cell segmentation task in light microscopic im-

ages. This segmenation task is part of the ISBI cell tracking challenge 2014 and
2015 [10,13]. The first data set “PhC-U373”2 contains Glioblastoma-astrocytoma
U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy
(see Figure 4a,b and Supp. Material). It contains 35 partially annotated train-
ing images. Here we achieve an average IOU (“intersection over union”) of 92%,
which is significantly better than the second best algorithm with 83% (see Ta-
ble 2). The second data set “DIC-HeLa”3 are HeLa cells on a flat glass recorded
by di↵erential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d
and Supp. Material). It contains 20 partially annotated training images. Here we
achieve an average IOU of 77.5% which is significantly better than the second
best algorithm with 46%.

5 Conclusion

The u-net architecture achieves very good performance on very di↵erent biomed-
ical segmentation applications. Thanks to data augmentation with elastic defor-

1 The authors of this algorithm have submitted 78 di↵erent solutions to achieve this
result.

2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University
of California at Berkeley. Berkeley CA (USA)

3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam.
The Netherlands
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Medical Segmentation Decathlon

Figure 1: Exemplar images and labels for each dataset. Blue, white, and red
correspond to labels 1, 2, and 3, respectively, of each dataset. Not all tasks have
3 labels.
Simpson et al., arXiv:1902.09063, 2019 Isensee et al., arXiv:1809.10486, 2018

And the winner is:

nnU-Net: Self-adapting Framework for U-Net-Based 

Medical Image Segmentation

“We consider a pool of basic U-Net architectures consisting
of a 2D U-Net, a 3D U-Net and a U-Net Cascade.”
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Deep autoencoding models for unsupervised anomaly

segmentation in brain MR images
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Fig. 1. The proposed anomaly detection concept at a glance. A simple subtraction of
the reconstructed image from the input reveals lesions in the brain.

pathological appearances [17]. Given the constrained anatomical variability of
the healthy brain, an alternative approach is to model the distribution of healthy
brains, and both detect and delineate pathologies as deviations from the norm.
Here, we formulate the problem of brain lesion detection and delineation as
an unsupervised anomaly detection (UAD) task based on state-of-the-art deep
representation learning, requiring only a set of normal data and no segmentation-
labels at all. The detection and delineation of pathologies are thereby obtained
from a pixel-wise reconstruction error (Fig. 1). To the best of our knowledge, this
is the first application of deep convolutional representation learning for UAD in
brain MR images which operates on entire MR slices at full resolution.

Related Work. In the medical field, many efforts have been made towards
UAD, which can be grouped into methods based on statistical modeling, content-
based retrieval or clustering and outlier detection [17]. Weiss et al. [19] employed
Dictionary Learning and Sparse Coding to learn a representation of normal brain
patches in order to detect MS lesions. Other unsupervised MS lesion segmen-
tation methods rely on thresholding and 3D connected component analysis [6]
or fuzzy c-means clustering with topology constraints [16]. Notably, only few
approaches have been made towards deep learning based UAD. Vaidhya et al.
[18] utilized unsupervised 3D Stacked Denoising Autoencoders for patch-based
glioma detection and segmentation in brain MR images, however only as a pre-
training step for a supervised model. Recently, Schlegl et al. [13] presented the
AnoGAN framework, in which they create a rich generative model of normal reti-
nal Optical Coherence Tomography (OCT) patches using a Generative Adver-
sarial Network (GAN). Assuming that the model cannot properly reconstruct
abnormal samples, they classify query patches as either anomalous or normal by
trying to optimize the latent code of the GAN based on a novel mapping score,
effectively also leading to a delineation of the anomalous region in the input
data. In earlier work, Seeböck et al. [14] trained an Autoencoder and utilized
a one-class SVM on the compressed latent space to distinguish between normal
and anomalous OCT patches. A plethora of work in the field of deep learn-
ing based UAD has been devoted to videos primarily based on Autoencoders
(AEs) due to their ability to express non-linear transformations and the ability
to detect anomalies directly from poor reconstructions of input data [2,4,12].

Baur et al., MICCAI Brainlesion Workshop, 2019
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Fig. 2. An overview of our VAE-GAN for anomaly segmentation

Very recently, first attempts have also been made with deep generative models
such as Variational Autoencoders [1,7] (VAEs), however limited to dense neural
networks and 1D data. Noteworthy, most of this work focused on the detection
rather than the delineation of anomalies.

A major advantage of AEs is their ability to reconstruct images with fairly
high resolution thanks to a supervised training signal coming from the recon-
struction objective. Unfortunately, they suffer from memorization and tend to
produce blurry images. Unconditional GANs [3] have shown to produce very
sharp images from random noise thanks to adversarial training, however the
training is very unstable and the generative process is prone to mode collapse.
VAEs have also shown that AEs can be turned into generative models, and
both concepts have also been combined into the VAE-GAN [8] and α-GAN [11],
yielding frameworks with the best of both worlds.

Contribution. Inarguably, AnoGAN is a great concept for UAD in patch-
based and small resolution scenarios, but as our experiments show, uncondi-
tional GANs lack the capability to reliably synthesize complex, high resolution
brain MR images. Further, the approach requires a time-consuming iterative
optimization of the latent code. To overcome these issues, we propose to utilize
deep convolutional autoencoders to build models that capture “global” normal
anatomical appearance rather than a variety of local patches. In order to deter-
mine the benefits of mapping healthy anatomy to a well-structured, latent man-
ifold, we also employ the VAE. In our experiments, we first compare dense and
spatial variants of AEs and VAEs in the task of unsupervised MS lesion delin-
eation and report significant improvements of spatial autoencoding models over
traditional ones. In addition, we further augment the spatial variants with an
adversarial network to improve realism of the reconstructed samples, ultimately
turning the models into an AE-GAN [9] and a novel spatial VAE-GAN [8]. With
the help of adversarial training, we notice additional minor, but insignificant
improvements.

2 Methodology

As a novelty in this work, we employ deep generative representation learning to
model the distribution of the healthy brain, which should enable the model to
fully reconstruct healthy brain anatomy while failing to reconstruct anomalous
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Fig. 4. 1st Column: a selected axial slice and its ground-truth segmentation; Succeeding
columns show the filtered difference images (top row) and the resulting segmentation
augmented to the input image (bottom row) for the following models defined in Table 1
(in order): dAE, sAE3, sAE-GAN, sVAE and sVAE-GAN.

150 epochs in minibatches of size 8, using a learning rate of 0.001 for the recon-
struction objective and 0.0001 for the adversarial training on a single nVidia
1080Ti GPU with 8GB of memory. Thanks to the reconstruction objective, the
training of both the AE-GAN and VAE-GAN was very stable and none of the
models collapsed.

Evaluation Metrics. We measure the performance of the different models by the
mean and standard deviation of the Dice-Score/F1-Score across different testing
patients, the Area under the Precision-Recall Curve (AUPRC) as well as the
average segmentation time per slice.

3.1 Anomaly Detection

Fig. 5. Realistic (left) and
unrealistic (right) samples
generated with AnoGAN.

We first trained normal convolutional AE & VAE
with a dense latent space of dimensionality 512
and found that, besides not being capable of recon-
structing brain lesions, they also lack the capability
to reconstruct fine details such as the brain convo-
lutions (Fig. 4). Similar to [2,4], we then make the
architecture fully convolutional to ensure that spa-
tial information is not lost in the bottleneck of the
model. Notably, this heavily increases the dimen-
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What is dementia?

• Disorders caused by abnormal 

brain changes

• Trigger decline in cognitive 

abilities, severe enough to 

impair daily life

• Affect behaviour, feelings and 

relationships

• Progressive

Common types of dementia

• Alzheimer’s disease: 60 to 80% 

of dementia cases

• Vascular dementia

• Lewy body dementia

• Frontotemporal dementia

• Posterior cortical atrophy

• Primary progressive aphasia
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Current diagnosis of dementia

• Clinical consultation

o Questions about the person’s concerns, symptoms, general health
and medical history

o Discussion with a relative about the person’ symptoms

o Physical check-up

o Completion of some pen-and-paper tests to check memory,
language and problem-solving skills

• Other possible tests

o Brain scans

o Blood tests

o Lumbar puncture
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Imaging in Alzheimer’s disease

• Magnetic resonance imaging

o Structural MRI

§ Atrophy

o Diffusion MRI

§ White matter integrity

• Positron emission tomography

o FDG PET (‘glucose’ PET)

§ Hypometabolism

o Amyloid & tau PET

§ Accumulation of amyloid-ß and tau 
proteins 

Cognitively
normal

Alzheimer’s
disease

Structural
MRI

FDG PET

Amyloid
PET
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Imaging in Alzheimer’s disease

Cognitively normal Alzheimer’s diseaseMild cognitive impairment

Structural

MRI

FDG PET

Amyloid

PET

Disease progression
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Machine learning for the diagnosis and prognosis of AD

• ‘Diagnostic’ classification task

o Differentiate cognitively normal (CN) subjects from patients with AD: 

CN vs AD

o Not clinically relevant but useful when developing algorithms

• ‘Predictive’ classification task

o Different patients with mild cognitive impairment (MCI) that will stay 

stable (sMCI) from the ones that will progress to AD dementia (pMCI): 

sMCI vs pMCI

o Clinically relevant but more difficult
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Residual and plain convolutional neural networks for 3D

brain MRI classification
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Residual learning

He et al., Deep Residual Learning for Image Recognition, 2015

Degradation problem: with the network
depth increasing, accuracy gets saturated and
then degrades rapidly

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

Solution:      Residual block

Residual = Output — Input

ℋ(x)

ℋ x = ℱ x + x

ℱ x = ℋ x − x
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Residual and plain convolutional neural networks for 3D

brain MRI classification

Korolev et al., ISBI, 2017

(a) VoxCNN (b) ResNet

Fig. 1. VoxCNN and ResNet architectures.

want to prevent possible information “leaks”, we only select
the first images taken for each subject. Resulting dataset has
231 images of four classes: 50 of Alzheimer’s Disease (AD)
patients, 43 of Late Mild Cognitive Impairment (LMCI),
77 of Early Mild Cognitive Impairment (EMCI) and 61 of
Normal Cohort (NC). With these four classes, we have six
binary (one-versus-one) classification tasks. All of the im-
ages are stored as voxel intensity values in 3D tensor of shape
110⇥ 110⇥ 110.

4. RESULTS

The results for six binary classification tasks are shown
in the Table 1. The network learns to accurately classify
Alzheimer’s Disease subjects from Normal Cohort, however
struggles to separate them from intermediate classes of Late
and Early Mild Cognitive Impairment. Both networks show
similar results within a standard deviation.

VoxCNN ResNet
AUC Acc. AUC Acc.

AD vs NC .88± .08 .79± .08 .87± .07 .80± .07
AD vs EMCI .66± .11 .64± .07 .67± .13 .63± .09
AD vs LMCI .61± .12 .62± .08 .62± .15 .59± .11
LMCI vs NC .67± .13 .63± .10 .65± .11 .61± .10
LMCI vs EMCI .47± .09 .56± .11 .52± .11 .52± .09
EMCI vs NC .57± .12 .54± .09 .58± .09 .56± .07

Table 1. Classification ROC AUC and accuracy (mean ± std.)

Figure 2 shows the ROC AUC values for the validation
dataset during training. This plot demonstrates that the net-
work classification performance constantly improves and then
plateaues after the 50th epoch.

Fig. 2. ROC AUC plot for AD vs Normal classification of
ResNet.

Figure 3 shows an example of network attention gener-
ated by prediction with obstructed images [11] for a Normal
Cohort subject from a test subset. We produce it by com-
piling the prediction mask while obstructing image parts with

“Both networks show similar results within a standard deviation.”
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CNNs for Classification of Alzheimer’s Disease: Overview
and Reproducible Evaluation

Wen, Thibeau-Sutre et al., arXiv:1904.07773 (under minor revision at Medical Image Analysis), 2019

3D subject-level CNN

3D Patch/ROI-based CNN

2D slice-level CNN

SVM
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CNNs for Classification of Alzheimer’s Disease: Overview
and Reproducible Evaluation

Wen, Thibeau-Sutre et al., arXiv:1904.07773 (under minor revision at Medical Image Analysis), 2019

3D subject-level CNN

3D Patch/ROI-based CNN

2D slice-level CNN

SVM

Bal. acc. (AD vs CN): 
0.85 

Bal. acc. (AD vs CN):  
0.83 (patch) / 0.85 (ROI) 

Bal. acc. (AD vs CN): 
0.74 

Bal. acc. (AD vs CN): 
0.87 
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CNNs for Classification of Alzheimer’s Disease: Overview
and Reproducible Evaluation

Wen, Thibeau-Sutre et al., arXiv:1904.07773 (under minor revision at Medical Image Analysis), 2019

3 categories identified:

1. Biased split
Data extracted from the same original is

distributed in both the train and test sets

2. Late split
Test / train split is performed after another

procedure (feature selection, pretraining, etc.)

3. No independent test set
Performance is evaluated on the train and / or

validation sets

Train + Test
biased
feature 

selection

Train

Test

train 
classifier

test 
classifier

2

subject 123 subject 123
slice #20 

subject 123
slice #50 

Train Test1

Train

train 
classifier

test 
classifier

3
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Study
Performance

Approach Data leakage
Number of 
citations

AD vs CN sMCI vs pMCI MCI vs CN AD vs MCI Multi-class

(Aderghal et al., 
2017b)

ACC=0.84 -- ACC=0.65 ACC=0.67† -- ROI-based None detected 16

(Aderghal et al., 
2018)

BA=0.90 -- BA=0.73 BA=0.83 -- ROI-based None detected 9

(Bäckström et al., 
2018) *

ACC=0.90 -- -- -- -- 3D subject-level None detected 20

(Cheng et al., 2017) ACC=0.87 -- -- -- -- 3D patch-level None detected 12

(Cheng and Liu, 2017) ACC=0.85 -- -- -- -- 3D subject-level None detected 8

(Islam and Zhang, 
2018)

-- -- -- -- ACC=0.931† 2D slice-level None detected 23

(Korolev et al., 2017) ACC=0.80 -- -- -- -- 3D subject-level None detected 72

(Li et al., 2017) ACC=0.88 -- -- -- -- 3D subject-level None detected 12

(Li et al., 2018) ACC=0.90 -- ACC=0.74† -- -- 3D patch-level None detected 7

(Lian et al., 2018) ACC=0.90 ACC=0.80† -- -- -- 3D patch-level None detected 30

(Mingxia Liu et al., 
2018a)

ACC=0.91 ACC=0.78† -- -- -- 3D patch-level None detected 59

(Mingxia Liu et al., 
2018c)

ACC=0.91 -- -- -- -- 3D patch-level None detected 26

(Qiu et al., 2018) -- ACC=0.83† -- -- -- 2D slice-level None detected 8

(Senanayake et al., 
2018)

ACC=0.76 -- ACC=0.75 ACC=0.76 -- 3D subject-level None detected 3

(Shmulev et al., 
2018)

-- ACC=0.62 -- -- -- 3D subject-level None detected 5

(Valliani and Soni, 
2017)

ACC=0.81 -- -- -- ACC=0.572 2D slice-level None detected 8

Study
Performance

Approach Data leakage 
(type)

Number of 
citations

AD vs CN sMCI vs pMCI MCI vs CN AD vs MCI Multi-class

(Aderghal et al., 
2017a)

ACC=0.91 -- ACC=0.66 ACC=0.70 -- ROI-based Unclear (b,c) 13

(Basaia et al., 2019) BA=0.99 BA=0.75 -- -- -- 3D subject-level Unclear (b) 25

(Hon and Khan, 2017) ACC=0.96 -- -- -- -- 2D slice-level Unclear (a,c) 32

(Hosseini Asl et al., 
2018) ACC=0.99 -- ACC=0.94 ACC=1.00 ACC=0.952 3D subject-level Unclear (a) 107

(Islam and Zhang, 
2017)

-- -- -- -- ACC=0.741† 2D slice-level Unclear (b,c) 23

(Lin et al., 2018) ACC=0.89 ACC=0.73 -- -- -- ROI-based Unclear (b) 22

(Manhua Liu et al., 
2018)

ACC=0.85 ACC=0.74 -- -- -- 3D patch-level Unclear (d) 39

(Taqi et al., 2018) ACC=1.00 -- -- -- -- 2D slice-level Unclear (b) 16

(Vu et al., 2017) ACC=0.85 -- -- -- -- 3D subject-level Unclear (a) 20

(S.-H. Wang et al., 
2018)

ACC=0.98 -- -- -- -- 2D slice-level Unclear (b) 49

(Bäckström et al., 
2018)*

ACC=0.99 -- -- -- -- 3D subject-level Clear (a) 20

(Farooq et al., 2017) -- -- -- -- ACC=0.993† 2D slice-level Clear (a,c) 31

(Gunawardena et al., 
2017) -- -- -- -- ACC=0.962 3D subject-level Clear (a,b) 8

(Vu et al., 2018) ACC=0.86 -- ACC=0.86 ACC=0.77 ACC=0.802 3D subject-level Clear (a,c) 8

(Wang et al., 2017) -- -- ACC=0.91 -- -- 2D slice-level Clear (a,c) 11

(Wang et al., 2019) ACC=0.99 -- ACC=0.98 ACC=0.94 ACC=0.972 3D subject-level Clear (b) 17

(Wu et al., 2018) -- -- -- -- 0.954† 2D slice-level Clear (a,b) 7

CNNs for Classification of Alzheimer’s Disease: Overview
and Reproducible Evaluation

Wen, Thibeau-Sutre et al., arXiv:1904.07773 (under minor revision at Medical Image Analysis), 2019

Average ACC (AD vs CN) : 

86.4%

Average ACC (AD vs CN) : 

93.8%
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Image Acquisition and Reconstruction

Image Enhancement

Semantic Image Interpretation

Quantification of Imaging Biomarkers

Disease Detection/Diagnosis

Disease Prediction
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Degenerative Adversarial NeuroImage Nets: Generating

Images that Mimic Disease Progression
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Fig. 1. Pipeline used for training the proposed DaniNet framework. Each component
of the pipeline is identified by a different colour. (Color figure online)

Deep Autoencoder (CDA) composed of two deep neural networks: an encoder E
that embeds x in a latent space Z, and a generator G that projects the vectors
produced by E back to the original manifold. Before this projection, the latent
vector z is conditioned with two variables: (i) d—a numerical representation [0–
3] of diagnosis (i.e. cognitively normal, subjective memory concern, early/late
mild cognitive impairment, Alzheimer’s disease); and (ii) a ∈ [1, A]—an index
describing age, binned into A = 10 groups. This age discretisation is important
for computing deformation loss (block in yellow) to learn morphological changes
along the progression. The third component (shown in green), consists of two
discriminator networks: (i) Dz that drives E to produce z with a uniform prior
and smooth temporal progression; and (ii) Db that drives G to produce real-
istic brain neuroimages. Finally, in the blocks coded in orange, we present the
proposed biological constraints used to model disease progression. In the next
sub-sections, we will describe each of these components in detail.

2.1 Pre-processing

The pre-processing block removes irrelevant variation on the data and ensures
that intensity values in each voxel only decrease. In an ideal scenario, intensity of
T1-weighted MRI decreases with age since tissue density (having high intensity)
will reduce, while water content (having low intensity) will increase. However,
due to scanner variability and other sources of noise, this may not be the case
in practice. To handle these variabilities, each input image is normalised using
the following pre-processing steps: (i) linear co-registration to a 1mm isotropic
MNI template using FLIRT-FSL, (ii) skull-stripping using BET-FSL, and
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Fig. 3. Visual results obtained by different configurations of DaniNet on MRI slices
from three participants in the test set.

Fig. 4. Neurodegeneration simulation of a 69-year old ADNI participant.

set of images, the user was asked to select the closest synthetic image to y.
Results from the survey confirm that DaniNet is a considerable improvement of
the baseline approach. The medical imaging experts selected the configuration
P -C-T 26±5 (mean ± std) times (72 ± 14%), the configuration C-T 7 ± 4 times
(19 ± 11%), and the baseline 1 ± 1 times (3 ± 3%). For only 2 ± 3 outputs
(6 ± 8%) the users were not happy with any of the generated synthetic images.

4 Conclusion and Future Work

We have proposed and evaluated (quantitatively and qualitatively) a novel deep-
learning framework that is able to learn how to emulate the effect of neurodegen-
erative disease progression on structural MRI. The framework produces person-
alised, realistic output images through a combination of biological constraints,
transfer learning, and conditioning upon both fixed and variable non-imaging
characteristics. To the best of our knowledge, we are the first to propose a simula-
tor that imitates realistic neurodegeneration by imposing biological constraints.
In future work we will extend the framework to simulate entire 3D-MRI with
the aid of low-memory techniques. Additionally, focal brain pathologies, such
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